
AD-A258 900 (
AFIT/GCS/ENG/92D-01

CREATING AND MANIPULATING FORMALIZED
SOFTWARE ARCHITECTURES TO SUPPORT A

DOMAIN-ORIENTED APPLICATION
COMPOSITION SYSTEM

THESIS

Cynthia Griffin Anderson
Captain, USAF DTI

AFIT/GCS/ENG/92D-01 L ELCTE'
AN 071993.

j-
0 Approved for public release, distribution unlimited

93 1 04 163

AFIT/GCS/ENG/92D-01

CREATING AND MANIPULATING FORMALIZED

SOFTWARE ARCHITECTURES TO SUPPORT A

DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems)

Cynthia Griffin Anderson, B.S.C.S.

Captain, USAF

December, 1992

Approved for public release; distribution unlimited

Preface

This research was part of an effort to develop a technology which will allow sophis-

ticated end-users to formally specify and compose software applications using domain-

oriented, rather than programming-oriented, terms. Ultimately, such a technology will

enable users to compose applications to suit their requirements, to execute prototypes of

these composed applications to verify that they behave as expected/desired and, then, to

automatically generate efficient software code to satisfy the original requirements. This

thesis investigated the role of software architectures in the development of such an appli-

cation composition system which has been named Architect. I hope that the Architect

system implemented herein will prove to be a useful starting point in achieving the overall

research goal of developing a full-scale application generation system.

I wish to thank my committee members, Majors Gregg Gunsch and Dave Luginbuhl,

for their incisive comments on the draft of this document. A special thanks goes to my

thesis advisor, Major Paul Bailor, whose wisdom, advice, encouragement and confidence

in me made this thesis possible. I also wish to thank the other members of the formal

methods research group, especially Mary Anne Randour who eagerly shared her wealth of

REFINE expertise with all of us.

But most of all, I want to thank my husband and best friend, Andy, for his patience,

support, understanding, and encouragement throughout this AFIT program and in all my

endeavors.

Cynthia Griffin Anderson

Accession For

NTIS GRA&I
DTIC TAB 0
Unannounced 0

MC ---• -..- ECTED I. Just 1 icatio

By
Distribut LonL

Availability Codeff
jAvail and/or

D35t j Special

Table of Contents

Page

Preface 11

Table of Contents iii

List of Figures ix

List of Tables xi

Abstract xii

I. Introduction 1-1

1.1 Background 1-1

1.2 Problem 1-4

1.2.1 Problem Statement 1-4

1.3 Scope 1-6

1.4 Sequence of Presentation 1-6

II. Survey of Current Literature 2-1

2.1 Introduction 2-1

2.2 Description of Software Architectures 2-1

2.3 Developing Software Architectures 2-5

2.4 Examples of Software Architecture Use 2-7

2.4.1 US Army Information Systems Engineering Command 2-7

2.4.2 Object-Oriented Design (OOD) Paradigm 2-7

2.4.3 Feature-Oriented Domain Analysis (FODA) 2-7

2.4.4 Hierarchical Software Systems 2-7

2.4.5 Flight Dynamics Division (FDD) of the Goddard Space

Flight Center 2-9

iii

Page

2.4.6 Command Center Processing and Display System Re-

placement (CCPDS-R) 2-9

2.5 Conclusion 2-10

III. Requirements Analysis 3-1

3.1 Introduction 3-1

3.2 Operational Concept 3-2

3.3 General System Concept 3-4

3.3.1 Overview 3-4

3.3.2 Developing a Formalized Domain Model 3-6

3.3.3 Building A Structured Object Base 3-9

3.3.4 Composing Applications 3-12

3.3.5 Extend Technology Base 3-13

3.3.6 Visualization 3-14

3.4 Related Research 3-14

3.4.1 Hierarchical Software Systems With Reusable Compo-

nents 3-14

3.4.2 Automatic Programming Technologies for Avionics Soft-

ware 3-17

3.4.3 Model-Based Software Development 3-20

3.4.4 Extensible Domain Models 3-22

3.5 Specific System Concept 3-23

3.5.1 System Overview 3-23

3.5.2 Software Refinery 3-2.5

3.5.3 Object-Connection-Update Model 3-27

3.6 Conclusion 3-29

iv

Page

IV. Software System Design Overview 4-1

4.1 High-Level System Design 4-1

4.1.1 Design Goals 4-1

4.1.2 Concept of Operations 4-2

4.1.3 Software System Design 4-4

4.2 Preliminary Design of the Application Composer 4-7

4.2.1 Review of the OCU Model 4-8

4.2.2 Adapting the OCU Model for this Implementation 4-10

4.3 Goals/Objectives for the Application Composer Implementation 4-13

4.4 Conventions Used in this Implementation 4-14

4.4.1 Conventions For the Software Engineer 4-15

4.4.2 Conventions for the Application Specialist 4-15

4.5 Data Structures to Support this Implementation 4-13

4.6 Summary 4-16

V. Detailed Software Design 5-1

5.1 Preprocess the Application 5-1

5.1.1 Building Import and Export Areas 5-2

5.1.2 Determining the Source for Imports 5-4

5.1.3 Import/Export Considerations 5-6

5.1.4 Determining the Source of Variables in Conditions . 5-9

5.1.5 Considerations for Variables in Conditional Expressions 5-10

5.2 Perform Semantic Checks 5-11

5.2.1 Architecture Semantic Checks 5-12

5.3 Simulate Execution 5-18

5.3.1 Call statements 5-20

5.3.2 If Statements 5-22

5.3.3 While Statements 5-22

5.4 Summary 5-23

v

Page

VI. Validation Domain 6-1

6.1 Background 6-1

6.2 Logic Circuit Domain 6-1

6.2.1 Domain Analysis - Part I 6-2

6.2.2 Domain Analysis - Part II 6-6

6.2.3 Domain Analysis - Part III6-8

6.3 Summary of Results for the Logic Domain \ 6-11

6.4 Conclusions 6-11

VII. Conclusions and Recommendations 7-1

7.1 Summary of Accomplishments 7-1

7.2 Conclusions 7-1

7.3 Recommendations for Further Research 7-4

7.4 Final Comments 7-6

Appendix A. Requirements for Specifying Primitive Objects A-1

A.1 Primitive Object Definition Template A-1

A.1.1 INPUT-DATA A-2

A.1.2 OUTPUT-DATA A-2

A.1.3 COEFFICIENTS A-3

A.1.4 UPDATE-FUNCTION A-4

A.1.5 Attributes, Current-State, Constants A-4

A.1.6 Miscellaneous A-4

Appendix B. Guide to Using the Application Composer B-1

B.1 Getting Started B-1

B.2 Using the Application Composition System B-2

B.3 "Compile-And-Load" File for the Application Composition Sys-

tem . B -3

vi

Page

Appendix C. Validation Test Cases and Results C-I

CA Decoder Test C-2

C.1.1 Circuit Diagram C-2

C.1.2 Application Specification - Test 1 C-2

C.1.3 System/User Dialogue - Test 1 C-6

C.2 Full Adder Test C-14

C.2.1 Circuit Diagram C-14

C.2.2 Application Specification C-14

C.2.3 System/User Dialogue C-15

C.3 BCD Adder C.-19

C.3.1 Circuit Diagram C-19

C.3.2 Application Specification C-19

C.3.3 System/User Dialogue C-23

C.4 2 x 2 Binary Array Multiplier C-33

C.4.1 Circuit Diagram C-33

C.4.2 Application Specification C-33

C.4.3 System/User Dialogue C-35

C.5 Universal Shift Register C-39

C.5.1 Circuit Diagram C-39

C.5.2 Application Specification C-39

C.5.3 System/User Dialogue C-41

Appendix D. Code D-1

D.1 Globals Definitions D-1

D.2 REFINE Domain Model D-1

D.3 OCU Grammar D-7

D.4 Imports-Exports D-10

D.5 Semantic-Checks D-23

vii

Page

D.6 Execute D-36

D.7 Eval-Expr D-41

Appendix E. Technology Base for the Logic Circuit Domain E-1

E.1 And-Gate E-1

E.2 Or-Gate E-2

E.3 Nand-Gate E-4

E.4 Nor-Gate E-5

E.5 Not-Gate E-7

E.6 JK-Flip-Flop E-8

E.7 switch E-10

E.8 LED E-11

E.9 Counter E-13

E.10 Half-Adder E-15

E.11 Decoder E-16

E.12 M UX E-19

Vita . VITA-1

Bibliography ... BIB-1

viii

List of Figures

Figure Page

1.1. Software Development Trends 1-2

1.2. Domain-Specific Software Application Composition Methodology. . . . 1-5

2.1. Filters and Pipes 2-2

2.2. Data Abstraction 2-3

2.3. Layered Systems 2-3

2.4. Rule-Based Systems 2-4

2.5. Blackboard Systems 2-4

2.6. OOD Paradigm for a Flight Simulator 2-8

3.1. Roles 3-3

3.2. General System Overview 3-5

3.3. Domain Model Instantiation 3-8

3.4. Combining Plug-Compatible Components 3-15

3.5. APTAS 3-18

3.6. OCU Subsystem Construction 3-21

3.7. Overview of Specific System 3-24

4.1. System Operations 4-2

4.2. System Structure 4-3

4.3. REFINE Object Class Hierarchy 4-17

4.4. Object Class Attribute Maps 4-18

5.1. Preprocess Application 5-1

5.2. Build Import/Export Areas 5-3

5.3. Determine Import Sources - Part 1 5-4

5.4. Determine Import Sources - Part 2 5-5

ix

Figure Page

5.5. Semantic Checks .. 5-12

5.6. Execute Application 5-19

5.7. Primitive Object Update Execution 5-20

5.8. SetFunction Execution 5-21

5.9. SetState Execution 5-22

A.1. Standard Primitive Object Definition A-1

B.1. Compilation Order for Simplified Application Composer System B-4

C.1. 3-to-8 Line Decoder (Subsystem) C-3

C.2. 3-to-8 Line Decoder (Primitive) C-4

C.3. Full Adder C-14

C.4. BCD Adder .. C-20

C.5. 2 x 2 Binary Array Multiplier C-34

C.6. Universal Shift Register C-39

x

List of Tables

Table Page

3.1. Analogy to Grammar 3-16

6.1. Truth Table - NAND gate 6-4

6.2. Truth Table - NOR gate 6-4

6.3. Truth Table - JK FLIP-FLOP A-5

6.4. Truth Table - 3-to-8 Line Decoder 6-9

6.5. Truth Table - Half Adder 6-19

6.6. Truth Table - 4-Input Multiplexer 6-10

6.7. Summary of Validation Results 6-11

C.1. BCD/Binary Comparison C-19

C.2. Universal Shift Register Controls C-39

xi

AFIT/GCS/ENG/92D-01

Abstract

This research investigated technology which enables sophisticated users to specify,

generate, and maintain application software in domain-oriented terms. To realize this new

technology, a development environment, called Architect, was designed and implemented.

Using canonical formal specifications of domain objects, Architect rapidly composes these

specifications into a software application and executes a prototype of that application as

a means to demonstrate its correctness before any programming language specific code

is generated. Architect depends upon the existence of a formal object base (or domain

model) which was investigated by another student in related research. The research de-

scribed in this thesis relied on the concept of a software architecture, which was a key

to Architect's successful implementation. Various software architectures were evaluated

and the Object-Connection-Update (OCU) model, developed by the Software Engineering

Institute, was selected. The Software Refinery environment was used to implement the

composition process which encompasses connecting specified domain objects into a com-

posed application, performing semantic analysis on the composed application, and, if no

errors are discovered, simulating the execution of the application. Architect was validated

using both artificial and realistic domains and was found to be a solid foundation upon

which to build a full-scale application composition system.

xii

CREATING AND MANIPULATING FORMALIZED SOFTWARE

ARCHITECTURES TO SUPPORT A DOMAIN-ORIENTED

APPLICATION COMPOSITION SYSTEM

L Introduction

1.1 Background

A "software crisis" is upon us, characterized by expensive, often late, often unreliable

and difficult to maintain systems which seldom meet all their requirements (6:7-8). As

computer hardware becomes more powerful and significantly less expensive, it becomes

possible to find automated solutions to more and more problems (6:8). These formerly

marginal application areas often require very large, very complex software systems and

"software entities are more complex for their size than perhaps any other human con-

struct;... many of the classical problems of developing software products derive from this

essential complexity and its non-linear increases with size" (9:11). As if this weren't bad

enough, trends indicate a widening gap between the productivity of an insufficient number

of computer professionals and the demand for their services, as illustrated in Figure 1.1

(6:10). Clearly, something must be done to improve quality and increase productivity in

the software development process.

One technique touted to achieve these quality and productivity improvements is

software reuse. In terms of the software development process, "reuse is very simply any

procedure that produces (or helps produce) a system by reusing something from a previous

development effort" (15:2). But to obtain its maximum benefits, software reuse should be

a "process of reusing software that was designed to be reused" (3:ix). This distinction is

important as it implies a more systematic, formal approach whose primary objective is

to create reusable software components, not develop them as an accidental by-product.

Systematic reuse, most notably design reuse, offers the promise of decreasing overall soft-

1-1

2.5

20 Demand(12%/yr)

1.5

Person~nel (4% tyr)

, I , I , I i I I
1980 1982 1984 196 i988 1990

Figure 1.1. Software Development Trends

ware development costs, improving maintainability, increasing understandability, reducing

complexity and improving reliability (17).

Traditional engineering disciplines have long recognized and successfully employed

reuse of design products. They benefit from large bodies of scientific knowledge, which over

the years, have been codified into models (12). These models act as reusable templates from

which to construct practical, working solutions to problems in a specific engineering area.

For example, "automotive engineers have models of cars, civil engineers have models of

bridges, mechanical engineers have models of rolling mills, electrical engineers have models

of motors..." (12:140). The engineer is trained to understand these models, to recognize

which model will solve a particular problem, and to adapt the model, if necessary, to fit

a specific application. He also knows that proper usage of the appropriate model will

produce the desired result even before he attempts to build the actual object.

Software engineering is a relatively new discipline which is just now beginning to

codify its body of knowledge. Unlike other engineering disciplines, it does not currently

rely on models as a means of designing working solutions. Instead, each new problem is

treated in isolation, as a unique situation requiring a completely unique solution. D'Ippolito

maintains that "models can do for the software industry what they have done before and

1-2

continue to do for the main-line engineering professions" (11:258). That is, they can provide

"reuse at the design level, reduced system complexity, a means to measure project risk,

reduced coding costs, reduced testing costs, reduced documentation costs, and increased

maintainability and enhanceability" (11:258).

We can think of a model as an architecture or a blueprint for building something.

When computer scientists discuss computer hardware, they implicitly or explicitly refer-

ence its structural composition, its schematic diagram, its architecture. The concept of an

architecture for computer hardware is clearly understood in the computer science commu-

nity; the term is now being applied to computer software as well. A software architecture

is "the high-level packaging structure of functions and data, their interfaces and control, to

support the implementation of applications in a domain" (20:3). More simply, it describes

the components which constitute a software system and how those components are con-

nected (a more precise definition of the term "component" will be presented in Chapter

3). If the needed components already existed in a library and if the appropriate compo-

nents could be easily identified, retrieved, and connected, reliable software systems could

be designed and implemented very quickly.

The Software Architectures Engineering (SAE) Project at the Software Engineering

Institute, an affiliate of Carnegie-Mellon University, is researching the feasibility of such

a process, which they have named "model-based software development" (24). In this

context, a model may be thought of as a set of software components or modules, each

performing a well-defined operation or function. In traditional engineering disciplines,

the models and the rules for combining them are stored in public technology bases where

they are readily available to anyone who wants to use them (24:7). The SAE project

seeks to develop such a technology or knowledge base for various software application

areas and domains. Developers of new software systems in these specific domains will

be able to choose appropriate components from the knowledge base and combine those

components using appropriate connection rules (also in the knowledge base) to create a

software architecture which represents the desired software system.

1-3

1.2 Problem

As in the traditional engineering disciplines (where, for example, automotive engi-

neers design automobiles, not bridges or airplanes), model-based software development is

likely to be conducted within a particular domain or application area. To make it a real-

ity, there must be a set of readily-available software components, a way for the software

developer to quickly and easily select the components required to construct his particular

application, and a means to compose those components in a meaningful way to produce

the desired application. An obvious approach to this problem would be to develop an

automated system to assist in this process. To do so,

"* there must be a formal description (both in human- and machine-understandable
terms) of the available components,

"* there must be a formal definition of the software architecture or framework into which
the components can be placed, and

"* there must be a method by which the software developer can specify the application
that he wants to create.

Figure 1.2 provides a simplified illustration of a domain-specific application compo-

sition system. A domain analysis, conducted by experts in the application area, provides

the basis for identifying and constructing a set of appropriate domain-specific compo-

nents. A generalized software architecture provides the basis for developing an architec-

ture customized for the domain. A domain-specific language allows the software developer

to specify, in domain-oriented terms, the desired application which is constructed using

the domain-specific architecture and appropriate domain components from the technology

base.

1.2.1 Problem Statement

Develop a formalized model of a software architecture and implement it within
a domain-specific application composition system.

1-4

Formal Model Domain-ofl a pcii Domain

Generalized Language Analysis
Software Architecture Lnug

Formalized
Domain-Specific Domain -Specific

Software Architecture Components

Technology Base

System

Figure 1.2. Domain-Specific Software Application Composition Methodology

1-5

1.3 Scope

This research effort focuses on formalizing an appropriate software architecture and

implementing it within a domain-specific application composition system. The implemen-

tation will enforce the rules of composition established by the software architecture model

and simulate the behavior of the composed application, using formal specification technol-

ogy. This enables the developer to verify that the system behaves as intended before it is

actually coded (with automated assistance) in an implementation language such as Ada.

There are many additional elements of a useful and usable application composition

system; several related research efforts are currently underway at the Air Force Institute of

Technology to address them. Most notably, Captain Mary Anne Randour has developed a

language with which the software developer can formally specify his application in dor ain-

oriented (rather than programming-oriented) terms (33) and Lieutenant Timothy Weide

is developing a visual interface to facilitate application specification and composition (44).

1.4 Sequence of Presentation

The remainder of this thesis is organized as follows:

Chapter II provides a review of the available literature concerning software architec-

tures.

Chapter III describes the application composition system of which this thesis effort

is a part. It serves as a requirements analysis.

Chapter IV presents an overview of the design of the application composition system

introduced in Chapter III and discusses the specific software architectural model which

was used as its foundation.

Chapter V explains the detailed design of the application composer implemented

during this research effort.

Chapter VI demonstrates how the application composer was used to compose mean-

ingful applications within a specific domain.

1-6

Chapter VII contains conclusions about the work described herein and presents rec-

ommendations for further research.

Several appendices provide additional information for the interested reader.

Appendix A serves as a primer for formally describing architectural components.

Appendix B summarizes detailed, background knowledge about executing the appli-

cation composer which may be needed by follow-on researchers as they strive to extend

the system.

Appendix C displays sample composed applications for the domain discussed in

Chapter VI.

Appendix D contains the application composer's domain-independent source code.

Appendix E contains the domain-specific technology base for the system's validating

domain.

1-7

H. Survey of Current Literature

2.1 Introduction

"Architecture" is a common and well-understood term when applied to computer

hardware. Even people who are newly acquainted with computer science have assimilated

the concept of a computer architecture with a mental image of boxes representing the CPU,

main memory, I/O devices, etc., connected by data and address buses. When computer

scientists discuss computer hardware, they implicitly or explicitly reference its structural

composition, its schematic diagram, its architecture. To them, the term "architecture"

is synonymous with structure, organization, and how components are connected together.

Now the term is being used to describe software as well.

This chapter surveys software architectures in the literature. What are they? How

are they developed? How have they been successfully used? This survey is not limited to

a particular time period, although serious interest in the topic appears to have begun in

the mid 1980s.

2.2 Description of Software Architectures

The American Heritage Dictionary defines architecture as "a style and method of

design and construction." In Model-Based Software Development, an architecture is "a

selection, from a technology base, of models and composition rules that defines the struc-

ture, performance, and use of a system relative to a set of engineering goals" (24:8), where

a model is simply "reusable engineering experience" (24:2). Kang defines a software archi-

tecture as "the high-level packaging structure of functions and data, their interfaces and

control, to support the implementation of applications in a domain" (20:3) and a domain

as "a set of current and future applications which share a set of common capabilities and

data" (20:3). As referenced by Lane, Shaw expands the concept of a software architecture

with this definition: "the study of large scale structure and performance of software sys-

tems" (22:1). Clearly, all these definitions have "structure" in common; in its most general

form, then, a software architecture somehow represents the structure of a software system.

2-1

It is human nature to be confused and uncomfortable with complexity. Developing

ever larger and more complex software systems leads to problems describing the system-

level design; i.e., the kinds of modules used in the system and how those modules are

connected. This system-level design or software architecture level "requires new kinds

of abstractions that capture essential properties of the major subsystems and the ways

they interact" (38:143). Abstraction is a process which allows us to reduce or manage

complexity, extracting only essential elements or qualities from the actual physical object

or concept and ignoring non-essential details. Software architectures provide a means for

describing these abstractions.

There are many similarities in the way existing software systems are organized or

structured. These common architectures can be grouped into the following broad categories

(38:143-4):

1. Pipes and Filters: Each module receives inputs and transforms those inputs in some

meaningful way into outputs, which then become the inputs of another module. Mod-

ules are connected when the output of one module serves as the input to another.

• •-'• Filter W-. , Filter I• • • Fil1ter • •• D

Figure 2.1. Filters and Pipes

2-2

2. Data Abstraction: Each module represents an object and its associated operations.

The connections in this type of architecture represent one object invoking another

object's operation. This approach is also known as object-oriented design.

a Im kMAOM~

Figure 2.2. Data Abstraction

3. Layered Systems: The system is organized hierarchically, with each layer providing

services to the layer above, while receiving services from the layer below. This is a

common architecture for operating systems.

SCore

Users

Figure 2.3. Layered Systems

2-3

4. Rule-Based Systems: A computational mechanism sequentially applies a collection

of applicable rules from a knowledge base. Each rule specifies the condition under

which it can be executed and the action that will be taken when it does execute.

Figure 2.4. Rule-Based Systems

5. Blackboard Systems: A central data structure (representing the state of the compu-

tation) is surrounded by independent processes which check its status and execute if

they can further the calculation and/or enable another process to execute.

Figure 2.5. Blackboard Systems

Although these basic architectures provide meaningful abstractions to help us grasp

how systems are structured and can be used to describe a wide variety of software systems,

they are currently used only informally, are not widely understood, and are not systemati-

cally taught to computer professionals (38:144). This is unfortunate because architectural

analysis can support reuse of software development products by focusing attention on the

2-4

~~~ks " • • l t i



high-level design or system framework and by increasing understanding of the relationship

between system organization and system behavior (29:125). To obtain the maximum ben-

efits offered by software architectures, certain information about components and connec-

tions must be available. Such information includes informal descriptions, abstract models,

syntax, semantics, evaluation criteria, engineering considerations, etc. (38:145). Difficul-

ties in identifying, codifying and disseminating this architectural information niave kept

software architectures from being used more extensively (38:145).

2.3 Developing Software Architectures

In 1988, Shaw wrote: "identifying and classifying system functions that are common

to many applications is a significant first step to the development of software architectures"

(38:145). However, by 1990, she had come to agree with other researchers (1, 17, 43) that

domain-specific axchitectures would likely lead to more reuse and now feels that we must

start by identifying and classifying system functions that are common to a particular

domain (29:123).

One approach to identifying system functions is domain analysis. Arango quotes

Neighbors: "a domain analysis is an attempt to identify the objects, operations and re-

lationships between what domain experts perceive to be important about the domain"

(1:153). Arango divides domain analysis into two phases (1:153):

1. Conceptual analysis - the identification and acquisition of information needed to
specify the system.

2. Constructive analysis - the identification and acquisition of information needed to
implement the system.

Because most domains are quite stable, Arango advocates using "practical domain

analysis methods" which incrementally augment or refine existing domain knowledge based

on studies by domain experts and analysis of documentation from similar existing systems

(1:159).

Feature-oriented domain analysis (FODA) is one approach to domain analysis whose

primary goal is to make domain products reusable (20:47). A domain model describes

2-5



the problems within a domain which can be solved with software systems; it defines the

problem space and is analogous to Arango's conceptual analysis phase. A domain trodel

is "a definition of the functions, objects, data and relationships of a domain" (20:3). The

domain modeling component of FODA consists of three activites: feature analysis, entity-

relationship modeling and functional analysis (20:35). Feature analysis identifies the fea-

tures (user-visible characteristics) of the domain, then abstracts and formally describes

them. The entity-relationship model captures and defines domain knowledge by identi-

fying entities and their relationships and classifying these entities into homogenous sets

(20:41). Presumably, features map to entities in some way. Finally, the functional analysis

identifies commonalities and differences between applications within the domain (20:42).

A second aspect of FODA is the architectural model. It provides a software solution

to the problems defined in the domain modeling phase (20:47); it defines the solution

space and is analogous to Arango's constructive analysis phase. Architecture modeling

concentrates on identifying the processes and domain-specific modules required to satisfy

the solution and allocating the features, functions, and data objects defined in the domain

model to these processes and modules (20:47). For maximum flexibility and adaptation

to future changes, a layered architecture is used as it allows the system to be viewed

from various levels of abstraction and encourages reuse at the appropriate level for each

application. More productivity is achieved through reuse at the higher design levels (20:50).

Classifying system functions or architectural components presents a major challenge.

To be effective, any classification scheme must be consistent (the same item is classified

the same way every time), expressive (able to communicate all required information),

and understandable (14:303). Classification methods, which are heavily oriented toward

indexing into very large libraries include (14):

1. enumerated classification - the domain is divided into successively narrower classes
in a rigid tree-structured hierarchy.

2. faceted classification - the domain is divided into its elemental classes or facets.
Components in the domain are described by combining these basic classes in a more
flexible structure than is possible with the enumerated scheme.

2-6



2.4 Examples of Software Architecture Use

There are several examples of the successful application of software architectures.

2.4.1 US Army Information Systems Engineering Command Softech, Inc anaiyzed

seven typical Combat Service Support systems for the US Army to evaluate whether any

functions were common to multiple applications and discovered that every application in-

cluded an inventory management function (37:16). They constructed a generic architecture

for that function and coded it using Ada language packages, tailoring the packages to each

application, as necessary. Although the applications differed significantly (i.e., personnel,

logistics, etc.), the generic architecture allowed the inventory function to be treated as a

single entity and to be reused across seven application areas. This study demonstrated the

feasibility of reusing software components and, to some extent, higher-level designs across

several different application areas (37).

2.4.2 Object-Oriented Design (OOD) Paradigm The Software Engineering Insti-

tute, while working on the Ada Simulator Validation Program, has developed a model or

architecture for a flight simulator (23). Each real-world component of an airplane (engine,

electrical system, fuel system, etc.) is represented as an object and encapsulated as a sys-

tem. Communication among the systems is accomplished via connection modules which

provide the only interface between the systems and their environment. See Figure 2.6.

The architecture provid,-s a means to systematically specify objects, systems, and their

connections and encourages consistent implementation (23:41), which results in better un-

derstandability and improved maintainability. Although originally proposed as a model

for a flight simulator only , this architecture has been used to represent an elevator system

(40), a cruise control system (40), and an electrical system (7), among others.

2.4.3 Feature-Oriented Domain Analysis (FODA) Kang and others used the com-

plete FODA methodology to successfully develop a window management system (20).

2.4.4 Hierarchical Software Systems. A layered or hierarchical architecture is the

foundation of research conducted at the University of Texas. Analysis of two unrelated

2-7



Flight Executive

Right-Eecutiveonnci Engne.LSyslem ElecticalSystM F e.ystem

Er~nk-SystemrLAggregte EnginqSystem Ccnnec 1#

RotorlOM RotorZ_OM BtrwierOM BleedyValveCM DihmerCM FanDuctCM Ex~haujsLOM En gine.Cas-

CM O tjectjitanager

Figure 2.6. QOD Paradigm for a Flight Simulator

2-8



projects (GENESIS and Avoca) revealed striking similarities in design and organization (5).

Based on those similarities, a model was developed which uses sets of "plug-compatible and

interchangeable" (5:3) components and provides a straight-forward means to indicate how

the components are connected to create a system (via composition rules which provide the

"guidelines by which components can be glued together" (5:4)). This approach encourages

component reuse and provides a standardized design process which can be used to create

systems very quickly; one database management system was designed, composed and im-

plemented within 20 minutes (5:2). Batory and O'Malley assert that hierarchical designs

can be used for a wide range of application areas (even some real-time, performance-driven

applications where other layered designs have resulted in slow implementations (5:36)); as

an example, their method is currently being used to design an upgrade to the Mach oper-

ating system (5:40).

2.4.5 Flight Dynamics Division (FDD) of the Goddard Space Flight Center The

FDD has been very successful using a modified version of the General Object-Oriented

Design (GOOD) methodology to develop various simulators. They rely heavily on three

concepts from GOOD: abstraction, inheritance and domain-specific architectures (41:278).

The Upper Atmosphere Research Satellite Telemetry Simulator (UARSTELS) benefitted

from several lessons learned from past development efforts. Instead of using a highly nested

architecture which was found to greatly increase compilation overhead, a non-nested archi-

tecture of Ada generic packages was used (41:282). The Generic Dynamics and Telemetry

Simulator (GENSIM) used an object-oriented design and an architecture very similar to the

SEI Flight Simulator (minus the connection modules). Significant lessons learned by FDD

from these projects include the fact that high compilation overhead is caused by highly

nested architectures, the advantage of using an object-oriented design approach, and the

importance of building domain components before developing an architecture (according

to the authors, this provides more potential for reuse across multiple architectures) (41).

2.4.6 Command Center Processing and Display System Replacement (CCPDS-R)

TRW used a Software Architecture Skeleton (SAS) to provide a software structure which

"identifies all top-level executable components, all control interfaces between these compo-

2-9



nents and all type definitions and data interfaces between these components" (36:503). The

components are part of the Network Architecture Services (NAS) which "provides the ob-

jects and operations needed to construct robust real-time networks which support flexible,

open architectures" (36:501). The use of SAS and NAS resulted in a "top-level software

architecture definable in terms of standard system building blocks with well-defined be-

havior and interfaces and eliminates a major source of errors which come in executive

logic control" (36:502). "The ability to rapidly construct a working system and focus on

real application interfaces rather than system software inconsistencies coupled with NAS

extensive support software and instrumentation resulted in an extremely successful effort"

(36:514).

2.5 Conclusion

Shaw recognized that successful software designs can be grouped into broad, general

categories, each representing a distinct software architecture. Several researchers, including

Shaw, are convinced that the use of domain-specific architectures will lead to more reuse

at the design level which should substantially increase reliability and reduce development

costs for new software systems. The experiences of Softech with the U.S. Army, the SEI

with their flight simulator model and the FODA methodology, Batory and O'Malley's hier-

archical systems, the FDD at Goddard Space Flight Center with the GOOD methodology

and TRW with CCPDS-R suggest that software architectures can facilitate development

of large, complex systems.

2-10



III. Requirements Analysis1

3.1 Introduction

The wide availability of powerful, relatively low-cost computer hardware has led to an

explosion in the demand for computer software products to automate a multitude of new

tasks. Using traditional methods, computer scientists and programming professionals have

been unable to meet, in a timely manner, this demand for the sophisticated, large-scale,

reliable software systems required for these new applications. Clearly, a new approach to

software design and construction is needed.

Software engineering will evolve into a radically changed discipline. Soft-
ware will become adaptive and self-configuring, enabling end users to specify,
modify and maintain their own software within restricted contexts. Software
engineers will deliver knowledge-based application generators rather than un-
modifiable application programs. These generators will enable an end user
to interactively specify requirements in domain-oriented terms.... and then
automatically generate efficient code that implements these requirements. In
essence, software engineers will deliver the knowledge for generating software
rather than the software itself.

Although end users will communicate with these software generators in
domain-oriented terms, the foundation for the technology will be formal repre-
sentations... Formal languages will become the lingua franca, enabling know-
ledge-based components to be composed into larger systems. Formal specifica-
tions will be the interface between interactive problem acquisition components
and automatic program synthesis components.

Software development will evolve from an art to a true engineering dis-
cipline. Software systems will no longer be developed by handcrafting large
bodies of code. Rather, as in other engineering disciplines, components will
be combined and specialized through a chain of value-added enhancements.
The final specializations will be done by the end user. KBSE (Knowledge
Based Software Engineering) will not replace the human software engineer;
rather, it will provide the means for leveraging human expertise and knowledge
through automated reuse. New subdisciplines, such as domain analysis and de-
sign analysis, will emerge to formalize knowledge for use in KBSE components.
(26:629-630)

'This chapter was co-written with Captain Mary Anne Randour. It is included in AFIT Technical
Report AFIT/EN/TR-92-5 and also appears in (33).

3-1



Perhaps this vision can become a reality for selected domains, not just within the

next century as Michael Lowry predicts, but within the next few years. Research is cur-

rently underway at the Air Force Institute of Technology (AFIT) to achieve such a reality.

Developing a full-scale application generation system, which is capable of automatically

producing efficient code to satisfy user-specified requirements presented in domain-oriented

terms, is a considerable task which will require several man-years of effort. However, one

element of application generation, the combining or composing of required components into

the proper framework or architecture, is attainable in the near term. This chapter explores

the issues involved in developing such an end-user application composer and describes one

possible methodology for accomplishing it.

3.2 Operational Concept

Several roles are discussed in describing this new approach to software development,

an approach where the end-user generates a software application to satisfy his requirements

using the software professional's knowledge about how to generate such applications. Some

of these roles are new, others are relatively unchanged from those in traditional software

system development.

1. System Analyst - Specifies new systems in a domain (20:4). Responsible for develop-
ing the concept of operations (defining policy, strategy, and use of application) and
defining training requirements (10).

2. System Engineer - Works with the system analyst to partition the system into sub-
systems and assigns the tasks to software or hardware development, as appropriate
(2).

3. Domain Engineer - Possesses detailed knowledge about the domain and gathers all
the information pertinent to solving problems in that domain (20:4). Models the
real-world entities required to satisfy the policy, strategy, and use of an application
as defined by the system analyst. Determines how, if possible, these entities can be
modeled within the constraints specified by the software engineer (10).

4. Software Engineer - Designs new software systems in the domain (20:4). Responsi-
ble for defining a formalized structure for the domain knowledge and providing the
translation from the domain-specific terms to executable software (10).

5. Application Specialist - Uses systems in the domain (20:4). Familiar with the overall
domain and understands what the new application must do to meet the requirements

3-2



(a sophisticated "user"). Provides the application-specific information needed to
specify an application.

I roqutrement

esytemjanalyst

eystem engineer -,4-"

domain model

JI ; --*-software engineer

hardware system softwaresysm tase

appl pilist

Ispiation specctIoy

automated applietion composer

"software design

code generaitn capability

Figure 3.1. Roles

The relationships among these roles are shown in Figure 3.1. Usually, a new sys-

tem begins with the identification of a new requirement. This requirement, if valid, is

forwarded to a system analyst who develops a concept of operations. The system analyst

works closely with the system engineer who partitions the system into software and hard-

ware subsystems. The system engineer consults the appropriate domain engineer to define

which components of his domain will be needed for software applications in the domain.

The domain engineer and the software engineer decide on which components are needed

to model the domain. The software engineer formalizes the domain knowledge provided

3-3



by the domain engineer into a domain model and its technology base. The application

specialist, using the domain model established by the software and domain engineers, cre-

ates a specification for an application. From this specification, an automated application

composer generates a software design which is then input to a code generation capability.

3.3 General System Concept

3.3.1 Overview An overview of the application composition system's components

and their relationships to each other appears in Figure 3.2. First, domain analysis is per-

formed, which consists of gathering appropriate domain knowledge, formalizing it via a

domain modeling language, and storing it in a domain model. The structure of the do-

main model is determined, in part, by the domain modeling language (DML) chosen. The

software architecture model, like the DML, imposes a specific structure on the domain

model, on the grammar used by the application specialist, and, ultimately, on the final

application specification. The domain model is used to develop a domain-specific gram-

mar. Although it may be transparent to the application specialist, he actually uses two

grammars: one to identify domain-specific information and one to specify the architecture

of the application. The architecture grammar remains the same for different domains; only

the domain-specific grammar changes. Application-specific data is written using these two

grammars and is converted into objects in the structured object base by the parser.

The populated structured object base and information from the technology base are

combined to build an executable prototype. First, the application specialist performs se-

mantic checking on the structured object base to ensure all constraints on the system have

been met. He then executes the prototype to demonstrate the behavior of the proposed

application. If the prototype does not behave as required, the application specialist can

change the original input and re-parse it into the structured object base. Using the knowl-

edge encoded in the domain model and the software architecture model, the structured

object base is manipulated into a formal specification for a domain-specific software archi-

tecture (DSSA). The DSSA is the system design and becomes the basis from which code

is generated. A visual system provides a graphical representation of the structured object

base and the DSSA, as well as a means to add to or modify them.

3-4



Endi

E£ C

3-5



The remainder of this section describes the above concepts and activities in more

detail.

3.3.2 Developing a Formalized Domain Model Before any applications can be com-

posed using this proposed system, the domain must be analyzed and modeled. In the

software engineering context, a domain is commonly defined as "an application area, a

field for which software systems are developed" (31:50) or "a set of current and future

applications which share a set of common capabilities and data" (20:2). Identifying the

boundaries of the domain, as well as "identifying, collecting, organizing, and representing

the relevant information in a domain based on the study of existing systems and their

development histories, knowledge captured from domain experts, underlying theory, and

"emerging technology within the domain" (20:2-3), constitutes domain analysis. Domain

analysis is currently the subject of several other research efforts and is not directly ad-

dressed in this project. However, it is important to gather the basic data, formalize it, and

store it in a standard format.

3.3.2.1 Domain Knowledge Domain knowledge is the "relevant knowledge"

that results from a thorough domain analysis and later evolves naturally as more experi-

ence is gained solving problems in the domain (31:47). More specifically, domain knowledge

consists of: basic facts and relationships, problem-solving heuristics, domain-specific data

types, and descriptions of processes to apply the knowledge (4). In the context of this

project, domain knowledge includes: descriptions of domain-specific objects (including

their attributes and operations), data types, composition rules, and templates for com-

monly used architectural fragments.

3.3.2.2 Domain Modeling Language An analogy to a domain modeling lan-

guage (DML) can be found in the more familiar data definition language of a database

management system. A data definition language describes the logical structure and access

methods of a database (21), just as our DML describes the logical structure of a domain

model and defines how the objects can be accessed. A DML used to encode domain

knowledge into a domain model must be able to formally describe:

3-6



1. Object Classes: Abstractions of real-world entities of interest in the domain.

2. Operations: Behavior of the objects in the domain.

3. Object Relationships and Constraints: Rules for relating objects (and sets of objects)
to other objects, as well as the constraints on these relaticnships. Examples include:

(a) Communication Structure: Message passing between/among domain classes and
operations.

(b) Composition Structure: Rules for combining domain object classes into higher-
level application classes and operations into higher-level application operations.

4. Exception Handling: What to do when an error is encountered.

To be useful in an automated system, the domain knowledge must be encoded into

a format that the software system can manipulate. This problem is analogous to encoding

knowledge in an expert system, where human knowledge is gathered and represented as

rules that allow a computer program to utilize the information. Neil Iscoe describes a

method for encoding domain knowledge into a domain model (see (19) for details). He

proposes using a domain modeling language or a meta-model as the basic framework to

instantiate a domain model based on some operational goal(s) (reasons for which the knowl-

edge will be used) (see Figure 3.3). Our operational goal is to "use the domain model,

software architecture model, and structured object base to generate a software architec-

ture for the application problem to be solved - to generate a domain-specific software

architecture" (2).

3.3.2.3 Domain Model A domain model is a "specific representation of appro-

priate aspects of an application domain" (18:302) including functions, objects, data, and

relationships (30). It is a result of expressing appropriate domain knowledge (identified by

the domain engineer) in a domain modeling language with respect to certain operational

goals (18:301-2).

Several researchers (5, 11, 12, 24) have indicated that software engineering must

become more of an engineering discipline if we are ever to reap the benefits of design reuse

(increased productivity, improved reliability, certifiability, etc.). When designing specific

applications, engineers use models, "codified bodies of scientific knowledge and technology

presented in (re)usable forms" (11:256) which are available to all practioners in various

3-7



KnowedgeModeling
Laguage

Sample Operational Goak:
"* Automatic Program Generation
"* Reverse Engneering"• Doecon Modeling Model

"* Automated Testing

Figure 3.3. Domain Model Instantiation

technology bases. Reuse of these validated, commonly-used models, which are readily

available in various technology bases, allows the engineer to construct a practical, reliable

solution to the problem at hand.

Contained within our domain model is such a technology base which acts as a repos-

itory for our reusable models. In our system, these models are often referred to as compo-

nents. Using an object-based perspective, a component can represent a real-world entity,

concept or abstraction and encompasses all descriptive and state information for that en-

tity/concept/abstraction as well as its behavior (what operations or functions it performs

and/or what transformations it undergoes). Components can be primitive domain objects

as described above or a "packaging" of these objects whose structure is determined by

the software architecture model. These packaged components will be referred to as ar-

chitectural fragments since they can be used to build an application architecture. The

technology base contains templates for generic components, rules for component composi-

tion, and descriptions of primitive object behavior. The parameters required to instantiate

these generic templates will be specified by the application specialist.

Domain analysis reveals common features of the software architectures that can be

used to implement various specific applications within the domain. In addition, common

constraints are identified and codified into rules used to determine how software com-

3-8



ponents can be legally combined. Using rules allows additional flexibility; any specific

architecture can be built as long as it meets the criteria specified by the rules.

3.3.3 Building A Structured Object Base Several steps must be taken to build the

structured object base. The following system components are essential to this phase.

3.3.3.1 Domain-Specific Language As with our domain modeling language,

an analogy to a domain-specific language (DSL) can be found in a data manipulation

language from the realm of database management systems. In the database context, a

data manipulation language allows the user of a database to retrieve, insert, delete, and

modify data stored in the database (21:13). In our context, a DSL is a language with syntax

and semantics which represents all valid objects and operations in a particular domain,

allowing modeling and specification of systems within that domain (32). According to

James Neighbors, a domain language is a machine-processable language derived from a

domain model. It is used to define components and to describe programs in each different

problem area (i.t., domain). The objects and operations represent analysis information

about a problem domain (28). In our research, a domain-specific language is defined as a

formal language used to define instances of objects and operations specific to a domain.

The objective of our DSL is to generate the structured object base needed to specify

an application architecture within a specific domain. To do so, it must be able to:

1. Instantiate objects

2. Instantiate generic objects

3. Instantiate generic architectural fragments

4. Compose the instantiated objects and architectural fragments in some meaningful
way

The object classes defined in the domain model are merely templates or patterns to

be used when constructing objects; they do not refer to specific, individual objects. The

first sentence type listed above creates specific instances of the objects in the object base.

These objects are used in building architectural fragments or as parameters for generics.

3-9



Default values can be used for attributes so these values need not be entered through the

DSL every time they are used.

Generics, stored in the technology base, provide templates for commonly used objects

and components; thus, the application specialist need not start from scratch each time he

wants to include one of these commonly used components. Generics must be instantiated

before they can be used. Instantiation is done by specifying which model is to be used

and providing specific instances and/or other data, as required. For example, a generic

architectural fragment may use three objects of a certain class. When this generic is

instantiated, three specific object instances of the required class must be given.

3.3.3.2 Software Architecture Model In addition to identifying the objects to

be used in generating a particular application, the application specialist must indicate what

is to be done with those objects; i.e., he must identify the application operations. Domain

primitive operations, associated with primitive objects, are available in the technology base.

But how can these primitive operations be assembled (composed) into application-specific

operations? What are the rules for composing these primitive operations into application

operations? How can these rules be represented and implemented?

Software architectures provide insight into software system composition. In its most

fundamental sense, an architecture is a recognizable style or method of design and con-

struction. A software architecture has been defined as "a template for solving problems

within an application domain" (40:2-2) or "the high level packaging structure of functions

and data, their interfaces and controls, to support the implementation of applications in

a domain" (20:3). It provides a mechanism for separating "the design of (domain) models

from the design of the software" (10). This separation of domain knowledge from software

engineering knowledge allows each type of engineer to concentrate on the issues relevant to

his own area of experience, without becoming an expert in the other discipline. By focus-

ing only on the design of the software, the software engineer is able to develop simplified

packaging and control structures which can be reused across a wide variety of domains.

Because a software architecture serves as a structural framework for software develop-

ment, we can expect it to provide a consistent representation of system components as well

3-10



as the interfaces between those components. A standard representation ensures that each

component is developed in the same manner, eliminating many implementation choices and

simplifying the development process. This standardization also results in consistent inter-

faces between all components, enabling them to be easily combined. This consistency of

component representation and interfaces should provide a suitable and flexible framework

for composing primitive operations into application-specific ones.

3.3.3.3 Architecture Grammar Certain portions of the application specialist's

input are not dependent on any particular domain; rather, they depend on the software

architecture model. These architectural aspects of the application can be specified using

a grammar common to all domains, an architecture grammar. This grammar enforces the

structure imposed by the software architecture model by defining valid sentences for pack-

aging the primitive domain objects into architectural fragments to define an application

architecture. These sentences will compose application operations using domain-specific

components described by the domain-specific grammar and other application operations.

3.3.3.4 Parser After the application specialist specifies the application com-

ponents using the domain-specific language and architecture language, the input must be

parsed into objects in the structured object base. The parser generates specific object

instances whose initial states are determined by the application specialist's input.

3.3.3.5 Structured Object Base The structured object base contains applica-

tion specific information: specific instances of domain object classes with all appropriate

attribute values for determining the object's state, as well as relationships for both do-

main objects and operations. The kinds of objects that might populate the object base

and the overall structural framework of those objects (the shape of the abstract syntax

trees) are established by the domain and software architecture models. The specific object

instances and the actual structure of the object base are determined by the application-

specific information provided by the application specialist using the DSL and architecture

grammars.

3-11



3.3.4 Composing Applications The application composer generates the application

architecture specified by the application specialist. This is accomplished by combining the

appropriate instantiated domain objects from the structured object base in accordance

with the domain composition rules. After the architecture is generated, its behavior can

be simulated to demonstrate its suitability and correctness. It should be noted that the

operations associated with each object in the technology base are certifiably correct; that

is, individual objects are guaranteed to behave as required. However, the specific objects

which are composed into the application may have been combined in such a way that

the composed application may not behave as expected or required. When the application

specialist is satisfied that the composed architecture is actually the one desired, he can

generate a formal specification for the architecture which can later be used to develop a

fully coded system.

3.3.-4.1 Semantic Analysis After an application is identified, the next step

is to ensure that the specified composition is appropriate; i.e., that it makes sense and

meets the constraints imposed by the composition rules. This step is accomplished via a

semantic analysis phase. As in programming language compilers, one aspect of semantic

analysis is to verify that a syntactically correct construct, which satisfies the restrictions

of the grammar in which it was written, is "legal and meaningful" (13:10). To be legal and

meaningful, the proposed application must meet certain other composition restrictions:

e.g., components must already exist before they can be used, an input to one component

must be produced as an output from another component, etc. Another aspect of semantic

analysis is to use knowledge about domain objects and typical system constructions to

assist the application specialist in choosing the components needed and in combining them

appropriately to create applications which behave as desired. Errors identified during the

semantic analysis phase must be corrected before the composition process can proceed.

3.3.4.2 Ezecute A composed application architecture that passes all semantic

analysis checks is legal and meaningful, but does it do what the application specialist wants

it to do? The execute component of the application composer simulates the behavior of

the architecture, using object operations which specify each component's behavior. This

3-12



behavior simulation may not be efficient or robust enough to serve as a full-scale opera-

tional system, but it provides the application specialist timely feedback on the correctness

of the specified architecture. If the application is incorrect (i.e., it does not behave as re-

quired/expected), the application specialist reassesses the components which were used in

the application and how they were combined, creating a new or editted application to sat-

isfy his requirements. This ability to simulate execution behavior in this rapid-prototype

manner assures the application specialist that the proposed application actually behaves

correctly before a formal specification and fully-coded system are generated.

3.3.4.3 Generate Specification A legal, meaningful, and correctly composed

application provides a software architecture which satisfies the application specialist's

requirements for a particular application. The software architecture can be used as a

blueprint, template, or specification from which to design and implement a full-scale, op-

erational version of the application. The generated specification is intended to be in a

formal, machine-processable format which can be used directly by a code generation tool

to produce a fully-coded application. However, the specification format could be tailored

to provide whatever form is appropriate for the using organization: graphical, textual, etc.

3.3.5 Extend Technology Base Eventually, the technology base, which formalizes

the knowledge about domain objects, will become outdated as understanding of the do-

main evolves and as the domain itself adapts to accommodate a changing technological

environment. Although the technology base may appear to be static, it must be dynamic

enough to accommodate this additional information as well as higher-level object classes

and operations, generic components and architectural fragments that are developed. These

additional elements give added flexibility to the application specialist because more pre-

defined components are available for future applications

A specialized set of tools allows the technology base to be modified or extended

to include this additional or revised domain knowledge. The extender must enforce the

structure dictated by the domain modeling language and the software architecture model.

3-13



3.3.6 Visualization "A picture is worth a thousand words." This old adage is

still true today, especially when dealing with complex and abstract concepts. The visual

system provides the application specialist with a graphical view of the structured object

base, as well as the application software architecture generated to satisfy his requirements.

By reviewing these "pictures," the application specialist can more fully understand the

components available for composition and the application just composed. Moreover, the

visual system will also be capable of inserting new instances of domain objects into the

structured object base, editing domain objects already in the object base, and executing

the application composer. It also provides the capability to extend the technology base,

enabling the application specialist and/or the software engineer to add/modify domain

object classes, add/modify generic components, and add/modify architectural fragments.

The visual system is addressed in more detail in (44).

3.4 Related Research

Several other research efforts have addressed various aspects of the system we are

attempting to develop. This section summarizes this related work and analyzes the simi-

larities to and differences from our project.

3.4.1 Hierarchical Software Systems With Reusable Components Don Batory and

Sean O'Malley are working to incorporate an engineering culture into software engineering.

The traditional engineering mindset dictates that new systems are created by fitting well-

tested, well-defined, and readily available building blocks into a well-understood blueprint

or architecture, which, if properly used, is guaranteed to produce the desired system. To

this end, they have developed a "domain-independent model of hierarchical software design

and construction that is based on interchangeable software components and large-scale

reuse" (5:2).

In Batory and O'Malley's view, each interchangeable component consists of an in-

terface (everything externally visible) and an implementation (everything else). Different

components with the same interface belong to a realm. All the components in a realm are

considered to be interchangeable or "plug-compatible" (5:3) because they have identical

3-14



interfaces. Symmetric components have at least one parameter from their own realm and

can be combined in "virtually arbitrary ways" (5:2) (also see Figure 3.4). Conceptually,

components are seen as layers or building blocks for an application; a system is seen as a

stacking of components, i.e., a composition of components. Constraints on stacking com-

ponents (i.e., rules of composition) are derived from the compatibility of their interfaces.

Hierarchical software system design recognizes that constructing large software sys-

tems is a matter of addressing only two issues: which components should be used in a

construction and how those components are to be combined together (5:16). It employs

an open software architecture, which is limited only by the inherent ability of the compo-

nents to be combined, i.e., by their interfaces. Symmetric components have no inherent

composition restrictions; thus, composition rules are simplified while ensuring maximum

design flexibility and potential reusability of components.

Given the following plug-compatible components:

A[x:R], B[x:R], C[x:R]

Some of the valid compositions include:

A B C Lc

B BAA

A[B[C]] B[A[C]] C[A[B]] C[B[A]]

Figure 3.4. Combining Plug-Compatible Components

3-15



Concept Grammar

Parameterized Components Productions with non-terminals on right

Parameterless Components Productions that only reference terminals

Symmetric Components Recursive production

Component Interface Left side of a production

Implementation Right side of a production

Realm Set of all productions with the same head

Software System Sentence

Rules of Composition Semantic error checking

Table 3.1. Analogy to Grammar

Batory and O'Malley use an interesting analogy, equating their concepts to a gram-

mar, as shown in Table 3.1 (5:5). Using this analogy, a domain is a language. Consider

the following example (5:5):

S= {a, b, c} S- alblc

R = { g[x:S], h[x:S], i[y:R]} R - gS I hS IiR

A realm S, having a set of components (a, b, and c), corresponds to a production where

the non-terminal S can be replaced by either a, b, or c. Whenever a component from realm

S is needed, a, b, or c could be used, depending on the behavior and level of detail needed.

A realm R, whose components g, h, and i require parameters from realms S, S, and R,

respectively, can be represented by a production where a non-terminal can be replaced by

both a terminal and a non-terminal. The non-terminals on the right-hand side are the

realms from which the parameters are provided. The complete analogy is summarized in

Table 3.1.

Batory and O'Malley's work provides support for our research. It confirms the un-

derlying principle of an application generator: building software systems from reusable

components is "simply" a matter of selecting which components to use and deciding how

3-16



to compose them together. It reinforces our intention to use an object-oriented approach

in designing our system. It also illustrates the role of component interfaces in system com-

position and demonstrates the importance of consistent interfaces and composition styles

in developing rules for combining components.

On the other hand, the Batory/O'Malley work falls short, in some ways, of what we

are attempting. It does not incorporate a mechanism for an application specialist to specify

new applications in domain-specific terms; this is a primary emphasis of our project. It also

does not seem to provide for tailoring of component composition to suit the application

being built; composing component A with component B into component C will always

produce the same behavior for C. We want to be more flexible in our compositions and

allow A and B to be composed into C in one situation and C' in a different situation,

depending on how the application specialist specifies the composition.

3.4.2 Automatic Programming Technologies for Avionics Software The Lockheed

Software Technology Center has developed the Automatic Programming Technologies for

Avionics Software (APTAS) system pictured in Figure 3.5 (25:2). The APTAS system,

built for the target tracking domain, "takes a tracking system specification input via user

interface with dynamic forms and a graphical editor, and synthesizes an executable tracker

design" (25:1). An application specialist defines a new tracking application by answering

questions which appear in pop-up, menu-like forms. His answers determine which addi-

tional questions are to be asked as he is guided through specifying a new tracker. When all

pertinent specifications have been entered (defaults exist for questions which are left unan-

swered), the application specialist generates a software architecture for the new tracker

via the architecture generator. A graphical user interface provides a "picture" of the ap-

plication architecture and allows the user to change it interactively. After the application

specialist is satisfied with the architecture just created, he generates executable code to

implement that architecture via the synthesis engine (25). He can also invoke a run-time

display which facilitates testing and analyzing the tracker just created.

The Tracking Taxonomy and Coding Design Knowledge Base is at the center of the

APTAS system. It contains the system's specification forms, the primitive modules from

3-17



INTERFACE f-- GNEAO INTERFACJE

----- --.---..... SY"NTHESIS
F FOMS "•ENGINE

TRACKING TAXONOMY

AND
CODING DESIGN

KNOWLEDGE BASE

SADA PROGRAM SAO

Figure 3.5. APTAS

3-18



which new trackers are constructed, and the composition rules which establish how prim-

itive modules are to be combined. The application specialist's answers to the questions

on the specification forms progressively reduce the number of primitive modules which

are candidates for incorporation into the new tracker. The architecture generated upon

completion of the forms specification is synthesized into an executable intermediate lan-

guage, Common Intermediate Design Language (CIDL). The CIDL code can be executed

to demonstrate system behavior. If the system behaves as desired, the CIDL representa-

tion can then be transformed into Ada code. The use of an intermediate representation,

such as CIDL, localizes the code translation function and enables languages other than

Ada to be targeted more easily.

The APTAS primitive modules and their composition rules are also written in CIDL.

Extending the system involves writing new primitive modules and incorporating references

to these new modules into the appropriate composition rules and specification forms. This

is generally considered to be a software engineer's task (rather than an application spe-

cialist's), as CIDL is a software specification language and few tools exist to simplify the

process.

APTAS is strikingly similar to the system we envision. It clearly demonstrates that

the concept of user-initiated composition and generation of domain-specific systems is

feasible. It allows application specialists to specify new applications in domain-specific

terms, by way of menu-like specification forms. It also provides a sophisticated graphical

user interface which can be used to construct and/or edit the tracker system, as well as to

view the structure of the architecture.

There axe, however, some major differences between APTAS and the system we

are developing. APTAS's use of a domain-specific language is implicit and embodied in

its graphical user interface. Our domain-specific language, on the other hand, is explicit

and its grammar is usable in both textual and graphical modes. We believe this provides

advantages to both the software engineer and application specialist in terms of adaptability,

flexibility, and ease of use. In addition, APTAS currently lacks a set of convenient tools to

facilitate extending its knowledge base; such a toolset is an integral part of our system.

3-19



3.4.3 Model-Based Software Development The Software Engineering Institute's (SEI)

Software Architectures Engineering (SAE) Project has proposed a concept called Model-

Based Software Development (MBSD) (24). Like Batory and O'Malley, MBSD strives to

apply traditional engineering principles to software development by exploiting prior ex-

perience to solve similar problems. This prior experience is codified in models, "scalable

units of reusable engineering experience" (24:11), which are stored in a technology base.

In a mature engineering domain, the technology base will contain "all the components an

engineer needs to predictably solve a class of problems, and the tools and methods needed

to predictably fabricate a product from the components specified by the engineer" (24:4).

Under MBSD, software development follows the engineering paradigm: reuse existing, ma-

ture models rather than starting from scratch for each new development. This involves

much more than code reuse; the requirements analysis, design, and software architecture

are reused each time the corresponding model is used.

MBSD uses a technology base, a repository of models and composition rules that

share common engineering goals. Each model is mapped to a specification form and a

software template for the target application language. The specification form is a text-

based description which uniquely identifies a specific instance of a model. The software

template is code containing place holders, which are replaced with information from the

specification form (24:10).

As part of MBSD, the SEI uses the Object-Connection-Update (OCU) model as

a consistent pattern of design, a software architecture. This model is especially suited

to domains where the real world can be modeled as a collection of related systems and

subsystems (24:17). Partitioning a system into subsystems provides different levels of

abstraction, giving the flexibility to replace a subsystem with another that either provides

a different function or has a different level of detail. In the OCU model, subsystems consist

of a controller, a set of objects, an import area, and an export area as pictured in Figure 3.6

(24:18).

3-20



Cotolel00

Objects

Figure 3.6. OCU Subsystem Construction

1. Controller - Performs the mission of the subsystem by requesting operations from the
objects it connects. A controller is passive, triggered by a call to perform its mission,
and depends on the other subsystem components to accomplish that mission.

2. Objects - Model behavior of real-world entities and maintain individual state infor-
mation. An object is passive, triggered by a call from the controller to which it is
connected.

3. Import Area - Makes data external to the subsystem available to the controller and
its objects.

4. Export Area - Makes data internal to the subsystem available to the other subsys-
tems.

Both controllers and objects have standard procedural interfaces used by external

controllers or application executives to invoke some action. Controllers have the following

procedures (24:19):

1. Update - Updates the OCU network based on state data in the import area and
furnishes new state data to the export area.

2. Stabilize - Puts the system in a state consistent with the current scenario.

3. Initialize - Loads the configuration, creates objects, and defines the OCU network.

3-21



4. Configure - Establishes the physical connection between import area and input data
as well as export area and the output data.

5. Destroy - Deallocates the subsystem.

All objects have procedures analogous to those for controllers, but operating on a single

object instance. Specifically, these procedures are (24:20):

1. Update - Calculates the new state based on input data and the current state.

2. Create - Creates a new instance of the object.

3. SetFunction - Changes or redefines the function used to calculate the state.

4. SetState - Directly changes the object's state.

5. Destroy - Deallocates the object.

These well-defined and consistent interfaces for controllers and objects facilitate and sim-

plify the application composition process.

MBSD provides some significant insights upon which to base our research effort. Its

focus on the reuse of validated, engineering experience is attractive and we have adopted

the notion of storing such information in a technology base. The OCU model provides a

realistic approach toward composing primitive objects into application-specific subsystems.

3.4.4 Extensible Domain Models2 The Kestrel Interactive Development System

(KIDS) is a knowledge-based system that allows for the capture and development of do-

main knowledge (39). The representation of the domain knowledge constitutes a domain

model, and these domain models are called domain theories. Essentially, the domain the-

ory provides a formal language, natural to specialists in that domain, for specifying the

problem they want to solve. The KIDS system provides support for constructing, extend-

ing, and composing domain theories, and over 90 theories have been built up in the system

(39). Additionally, the set of domain theories developed during the domain modeling effort

serves as the basis for software synthesis.

The foundations of the KIDS approach emerged from years of research into the

specification and synthesis of programs (39). Concepts from algebra and mathematical

2This section was provided by Major Paul D. Bailor

3-22



logic are used to model application domains and synthesize verifiably correct software.

Domain modeling entails the analysis of the domain into the basic types of objects, the

operations on them, and their properties and relationships. The domain model is then

expressed as a domain theory. Theories are useful for modeling application domains for

the following reasons.

1. The basic concepts, objects, activities, properties, and relationships of the domain
are captured by the types, operations, and axioms of a theory.

2. Any queries, responses, situation descriptions, hypothetical scenarios, etc. are ex-
pressed in the language defined by the domain theory.

3. The semantics of the application domain are captured by the axioms, inference rules,
and specialized inference procedures associated with the domain theory.

4. Simulation, query answering, analysis, verification of properties, and synthesis of
code are supported by inference within the domain theory.

5. Various operations on models such as abstraction, composition, and interconnection
are supported by well-known theory operations of parameterization, impoltation,
interpretation between theories, and others. Thus, a high degree of extensibility is
obtained.

3.5 Specific System Concept

Several aspects of the system described in Section 3.3 depend heavily on the choice

of the models and tools used in the implementation. These selections may impact other

parts of the system. Figure 3.7 is a modification of the system overview, incorporating the

specific models and tools to be used. It represents Architect, the specific system which is

to be implemented during this research effort.

3.5.1 System Overview Figure 3.7 illustrates how specific tools and models further

define Architect. REFINE, as the domain modeling language, imposes its structure on the

domain model (which will be represented in REFINE also). Input, written in the domain-

specific and architecture grammars, is processed through a parser generated by DIALECT.

DIALECT requires two inputs to generate a parser: a DIALECT domain model (a subset

of the system domain model) and a grammar definition. The DIALECT parser creates

abstract syntax trees in the structured object base. The visualizer will be implementec

3-23



CID
€ 0 •,,-

a Em

E CL

o
(r

•cE

ccc

Eiur Mo.7 Ovrve ofSfff ys

> U) D

i I iI I I I !



using INTERVISTA. The SEI's OCU model will serve as our software architecture model,

providing a structure around which to generate our applications. KIDS will serve as a

mechanism for realizing extensibility of the domain model and technology base.

3.5.2 Software Refinery Software Refinery is a formal-based specification and pro-

gramming environment developed by Kestrel Institute and available commercially from

Reasoning Systems, Inc. We have selected this environment in which to implement Ar-

chitect for several reasons, but the main factor in our decision is REFINE's powerful,

integrated toolsets that allow rapid prototyping. This decision has many implications on

how the system will operate, as we will show.

3.5.2.1 Capabilities The REFINE environment consists of the following tools:

1. A programming language (REFINE) which includes set theory, logic, transformation
rules, pattern matching, and procedures (35:1-2). The REFINE language provides
a wide range of constructs from very high level to low level, making it suitable for
various programming styles, including use as an executable specification language.

2. An object base which can be queried and modified through REFINE programs (35:1-
2). "Object classes, types, functions and grammars are among the objects you can
define and manipulate" (35:1-4) with several built-in and powerful object base ma-
nipulation tools.

3. A language definition facility (DIALECT) which allows design of languages using an
extended Backus Naur Form notation. REFINE supplies a lexical analyzer, parser,
pattern matcher, pattern constructor, and prettyprinter for the language (35:1-2).

4. A toolset (INTERVISTA) which is useful in creating a visual, window-based inter-
active user interface.

3.5.2.2 Domain Modeling Language Some domain modeling languages al-

ready exist for expressing domain knowledge within a formalized domain model; we con-

sidered two such languages: the Requirements Modeling Language (RML) and REFINE.

RML was designed as a research tool as part of the Taxis Project at the University of

Toronto. It allows "direct and natural modeling of the world" (16:3) in an object-oriented

manner which "captures and formalizes information that is left informal or not documented

in current approaches" (16:1). RML can express "assertions (what should be true in the

3-25



world), as well as entities (the 'things' in the world) and actions (happenings that cause

change in the world)" (16:4). This is precisely the type of information we want to capture

in our domain model.

Even though both RML and REFINE appear to be capable of expressing the kind of

information we require in the domain model, we chose REFINE as our domain modeling

language for the following reasons:

1. REFINE provides an integrated environment including programming constructs and
powerful object base manipulation tools. Use of REFINE's existing tools eliminated
the need to write our own, allowing more time to be spent on the research itself.

2. RML is not an executable language; no compilers currently exist. To use RML, we
would be forced to develop a compiler, a considerable overhead to our project. As
REFINE is also capable of expressing the information we require, it is unclear what
added benefits RML could provide to justify this additional expense.

3. The REFINE environment includes compatible tools (DIALECT and INTERVISTA)
useful in other portions of the system.

4. REFINE is a commercially available and supported product.

5. Members of the research team already possessed a working knowledge of REFINE.

3.5.2.3 Parser "DIALECT is a tool for manipulating formal languages" (34:1-

1). A part of the REFINE software development environment, DIALECT generates appro-

priate lexical analyzers, parsers and pretty-printers for user-specified, context-free gram-

mars. Valid input is parsed and stored as abstract syntax trees in the REFINE object

base, according to the structure established in the DIALECT domain model. The DI-

ALECT domain model defines object classes, object attributes, and the structure of the

instances in the object base. DIALECT also supports grammar inheritance, allowing for a

base language with several variations or "dialects." In Architect, the architecture grammar

acts as the common base, and the domain-specific grammar specifies a particular varia-

tion. DIALECT does impose restrictions on the grammars. Since DIALECT generates an

LALR(1) parser, the grammar must be consistent with this type of parser. Also, the pro-

ductions in the grammar must correspond to the structure defined in the domain model.

Altering some productions may require updating the DIALECT domain model.

3-26



3.5.2.4 Structured Object Base The structured object base was implemented

using the REFINE object base. REFINE includes many tools which, when combined with

REFINE code, provide all of the functions necessary to manipulate the structured object

base. However, the object base must be accessed through the REFINE environment.

3.5.2.5 Technology Base Models in the technology base were represented as

REFINE code and stored in REFINE's object base. Although separate conceptually, the

technology base and structured object base are not physically separate. Access is controlled

by Architect to avoid any confusion.

3.5.2.6 Visual System INTERVISTA provides a tool set with which to gen-

erate a window-based graphical user interface. It is compatible with the other REFINE

tools; therefore, it is easily integrated. INTERVISTA can access the REFINE object base,

so all its required data is readily available.

3.5.3 Object-Connection- Update Model We have selected the Software Engineering

Institute's Object-Connection-Update (OCU) model for our software architecture model.

As such, it provides a framework for composing applications - a standardized pattern of

design for all applications and their components. The OCU model's consistent interfaces

enable all components to be accessed in the same manner and its intercomponent commu-

nication scheme ensures that each component can readily access the external data needed

for its processing. Currently, our focus is on implementing the subsystem aspect of the

OCU model; the hardware interface portion of the model will be addressed in follow-on

research efforts.

The choice of the OCU model for our software architecture model had certain impli-

cations for Architect.

1. Terminology - In keeping with the OCU model, we will refer to domain primitive
objects as "objects," compositions of objects as "subsystems," the locus of control of
a subsystem as a "controller," and the overall application itself as an "executive" (see
Sections 4.2.1.3 and 4.2.2.1 for a more detailed discussion of the executive). External
data needed by an object are "input-data," whereas data to be made externally
available are "output-data." An "import area" serves as a focal point for all external

3-27



data needed by the subsystem and an "export area" is the focal point for all internal
data to be made available to other subsystems. The OCU model's names for the
object and controller procedural interfaces have also been retained.

2. Use of a Technology Base - Although the concept of storing reusable domain knowl-
edge or models in a technology base is not unique to the OCU model, it is a funda-
mental component of Model-Based Software Development of which the OCU model
is a part.

3. Domain Analysis - The OCU model deals with objects and subsystems. This imposes
a constraint on the domain engineer and will impact the manner in which domain
analysis is conducted. Under the OCU model, the domain engineer must model the
domain in terms of subsystems which can be composed from lower-level, more prim-
itive objects. Many domains can be naturally modeled in such a way; with other
domains, a new mindset may be needed to incorporate the subsystem/object require-
ments of the OCU model. Alternatively, an additional class of software architectures
may need to be defined.

4. Definition of Domain Objects - The OCU model requires that all objects be defined
in the same manner. Each object has state data, other descriptive information,
input-data/output-data definitions, and the following procedural interfaces: Update,
Create, SetFunction, SetState, and Destroy. These requirements dictate how the
objects will be constructed, severely limiting implementation choices. However, it is
this very limitation which provides the flexibility that allows the domain objects to
be successfully composed to satisfy the application specialist's specification.

5. Definition of Architectural Fragments - The OCU model requires that all architec-
tural fragments (subsystems) be described in the same way. All subsystems have
an import area, export area, controller, and objects. Each controller has the follow-
ing procedural interfaces: Update, Stabilize, Initialize, Configure, and Destroy. As
with the objects, this apparent limitation on implementation choices actually pro-
vides great flexibility in composing subsystems and combining them into a complete
application.

6. Composition Rules - The standardized object/subsystem definitions and interfaces of
the OCU model simplify application composition. There are no inherent restrictions
preventing one component from being combined with another; all composition rules
are domain-specific and do not derive from the software architecture.

7. Intercomponent Communication - The OCU model establishes and enforces a stan-
dard method for intercomponent communication. Communication external to the
subsystem is localized in the import area which obtains the necessary input-data
for all objects within the subsystem. This localization of communication concerns
within the narrow guidelines imposed by this scheme simplifies intermodule commu-
nication: subsystems can readily obtain needed external information in a consistent
manner and changes in the low-level implementation of the communication process
are hidden from the subsystems/objects.

8. Structure of the Resulting Application Specification - Obviously, the specification
produced by the application composer is impacted by the choice of a software ar-

3-28



chitecture model. The OCU model produces an application (an "executive") which
is composed of subsystems. These subsystems can be decomposed into objects and
lower-level subsystems, if appropriate. This hierarchical structure is preserved in the
generated specification.

The OCU model is the result of years of research and experimentation by the SEI.

It has been used successfully in the flight simulator, missile, and engineering simulator

domains (10) and appears to provide a suitable structure for composing applications within

our application composition system.

3.6 Conclusion

Software engineering may be on the brink of a new era, an era in which software

engineers develop knowledge about generating software systems and application specialists

actually create the software systems using familiar, domain-oriented terms. Our research,

which builds on important work already accomplished by various researchers, is designed

to demonstrate the feasibility of such an application composer.

3-29



IV. Software System Design Overview

This chapter presents an overview of the high-level design of the application com-

position system introduced in Chapter III (Architect). It discusses various preliminary

design decisions (which stem from the choice of the OCU model for the software architec-

ture of the composed applications) by reviewing the OCU model and identifying certain

adaptations which were made for this implementation. In addition, the implementation's

goals/objectives, conventions, and data structures are examined.

4.1 High-Level System Design

This section' describes the high-level design of Architect, the system presented in

Section 3.5.

4.1.1 Design Goals Throughout the design process, an attempt was made to opti-

mize several fundamental goals. These goals include:

4.1.1.1 Domain Independence Since Architect must be applicable to any do-

main, it should not directly incorporate (i.e., "hardcode") knowledge about a specific

domain or type of domain; the technology base is the proper, sole repository for such

domain-specific information. If any domain knowledge were to be included in Architect,

code changes would likely be required before it could be used with a new or modified

domain. Obviously, this greatly limits the applicability and usability of the system.

4.1.1.2 Extensibility It would be very naive to assume that an initial domain

analysis will reveal all possible knowledge about a particular domain and that the domain

model, which formalizes this knowledge, will never change. In reality, the domain model

will continue to evolve as existing knowledge is further refined and/or new domain infor-

mation is added to the system. If this evolution cannot be achieved easily, Architect will

quickly become obsolete.

1This section was jointly written by Captains Cynthia Anderson and Mary Anne Randour. It is included
in AFIT Technical Report AFIT/EN/TR-92-5 and also appears in (33)

4-1



4.1.1.3 Flexibility Because the concept of application composers is rather

new, we do not yet know how application specialists and software enginee. s wl•[ best be

able to use them. Architect, therefore, must be flexible enough to allow multiple methods

for performing various tasks and a wide range of application specification options.

4.1.1.4 Usability Application specialists, the primary users of this system,

must have some degree of software programming knowledge, but they can not be expected

to have the same degree of understanding as a software engineer. Therefore, it is important

that the system not require detailed programming knowledge from its users. In many cases,

the goals of usability and flexibility conflicted, so a balance had to be found.

Domain Model
Technology Base Semuit

Obi Deft Ruine

AfItbutas T019101as Pvknove ApplbNaom AmdtSen Domain-

Furdtlms amd

Objects Objacts 0' Object Semantic Obet OjcTo Save To Save a To Save Rules To Save Functions

Input ~~~~Instances T ae Fr~n

I- IF- !Preprocess,
Par*, Object COIcT.OM Object and Object E_ i Object

--------- B s Base -
CnebBase Apipiioen Base Basek B se eilotDefinition Somirie.

DSL Architecture
Grammar Grammar

Edit Objct Be"

Figure 4.1. System Operations

4.1.2 Concept of Operations The steps which are followed when using this appli-

cation generator are depicted in Figure 4.1 as labels on the flow arrows. The application

specialist must first identify all objects to be used in the application specification and

enter (parse) them into the structured object base using domain-specific and architecture

4-2



grammars. Some of these objects may require further information before they are fully de-

fined (e.g., previously saved objects must be located and loaded, "holes" in generic object

templates must be filled, etc.); the application specialist provides this additional informa-

tion by completing the application definition. Although the application definition may be

considered complete from the user's point of view, some data needed by the system may

not yet be directly available; preprocessing the application specification automatically gen-

erates this essential information. When the application is fully defined, semantic checks

are performed to identify any composition errors, which must be corrected before the ap-

plication's behavior can be simulated. At any time, the application specification can be

changed (edited), usually in response to a semantic error or to include additional data. If

no semantic errors exist and no additions/changes have been made, the application's be-

havior can be simulated (executed). If the application behaves as the application specialist

intended, he may generate a formal specification for the composed application which will

be used by an automatic code generator to produce a fully realized application.

VuI

oPpetm Ed Sve to
Parms A#c PrpoceSS Sema niect ExeC Tecnokogy *fcaton

DekifC awl Base Bs

lm WTIate Bo A

Deftnos Areas

Figure 4.2. System Structure

4-3



4.1.3 Software System Design The eight steps outlined above correspond directly

to Architect's eight top-level modules as shown in Figure 4.2. The highest level module,

the visual system, will eventually control each of the other modules as well as all user in-

teractions through a graphical interface. However, the basic system was developed before

the visual system was completed; therefore, a simple user interface, which is easily re-

placed, was implemented. In the system design, we have made a conscious decision to keep

application specification a domain-oriented, rather than programming-oriented, process.

The system is designed to use all available domain knowledge to insulate the application

specialist, as much as possible, from programming details, conventions, and jargon.

Each of Architect's major functions is encapsulated into one of the system's top-level

modules. These modules are further discussed in the remainder of this section.

4.1.3.1 Parse Using REFINE, data can be input into the object base using

one of two different methods: through a grammar or directly by using built-in REFINE

functions.

Using the DIALECT tool allows the application specialist to reuse his input files

as templates for other application definitions. The grammar also provides a consistent

format for saving objects from the object base into the technology base. The domain-

specific portions of the grammar can be separated from the architectural components.

DIALECT allows grammars to inherit the productions of other grammars. In this case,

each domain-specific grammar inherits the same architecture grammar. If the domain is

changed, only one grammar is affected. However, the application specialist must conform

to the structure imposed by the grammars. If the current domain changes, the domain-

specific grammar will require appropriate, corresponding changes. If a different domain is

to be used, a new domain-specific grammar must be written; however, grammars for other

domains can serve as a guide to facilitate ci ,ating new grammars.

An alternative approach is to build REFINE tools that allow the application specialist

to interactively enter the objects into the object base. This method migrates most easily

to the visual interface planned for a follow-on project (44). Also, this method is domain-

independent. However, additional code must be written to save portions of the object

4-4



base. The developer must devise a standard format for the files to allow this data to be

read back into the object base.

The best approach is to combine the two methods. The application specialist can

input objects into the object base either through a grammar or interactively. The grammar

provides a format for saving and retrieving all objects in the object base and a means of

saving "templates" for application definitions. The interactive portions extend more readily

to the visual system.

4.1.3.2 Complete Application Definition After all of the application special-

ist's input is parsed into the object base, additional processing is needed to complete the

definition. The application specialist can fully define an object in the grammar or he can

give partial information in one of three forms: a generic instance, an incomplete object,

or an object to load. As part of completing the application definition, the system must

actually instantiate the generic objects, complete incomplete objects by prompting the ap-

plication specialist for values for each attribute, and physically load objects into the object

base.

4.1.3.3 Preprocess Application The structured object base now contains only

"complete", fully-instantiated application components. However, some critical data has

not been specified. For example, the contents of a subsystem's import and export areas

have not yet been identified. These areas are dependent upon the inputs and outputs,

respectively, of the primitive objects which are controlled by that subsystem. Appropriate

input-data and output-data for each primitive object have been identified during domain

analysis and are available to the system in the technology bao,-. Using this knowledge,

the preprocessing module dynamically builds each subsystem z. import and export areas,

prompting the application specialist to indicate where the import data will be obtained

when more than one subsystem produces the desired information.

4.1.3.4 Perform Semantic Checks Two levels of semantic checks exist in Ar-

chitect. Architecture-oriented semantic checks ensure that the proposed application spec-

ification conforms to the composition requirements of the OCU model and that its behav-

4-5



ior can be successfully simulated (e.g., all components exist in the object base, applica-

tion/subsystem update procedures directly reference only components which are part of

the same application/subsystem, data input to one subsystem is produced as output by

some subsystem in the application, etc.). Domain-specific semantic checks are knowledge-

based, building on what is known about the domain, its objects, and previous applications

created in that domain, to assist the application specialist in composing a meaningful and

optimized application.

Meaningful architecture semantic checks can be performed on the application as a

whole and also on its constituent subsystems. There axe currently no meaningful semantic

checks for primitive objects; the system assumes that primitive object class definitions and

update procedures have been correctly constructed by a software engineer.

4.1.3.5 Edit Application If the application specialist decides an object in-

stance is not exactly what was intended, he can edit the object. He can edit existing

instances, add new objects, or delete objects. If the application specialist modifies the

object base, he must also perform preprocessing and semantic checking on the entire ob-

ject base to ensure the integrity of the data before simulating behavior or generating the

specification.

The goal of domain independence has a large impact on how this module is designed.

If certain domain knowledge is embedded in the source code, the code must be modified

when the domain changes. If the code is completely independent, the interface may be

more difficult to build and less user-friendly (the system can not give detailed prompts

explaining what type of data is expected). In this case, domain independence is more

important than friendly prompts.

4.1.3.6 Execute Application After the structured object base is fully popu-

lated and the semantic checks have uncovered no errors, the application's behavior can

be simulated. This enables the application specialist to ascertain if the application, as

specified, behaves as expected/desired. Behavior simulation is achieved by executing the

application's update procedure, which consists of a series of calls to subordinate sub-

4-6



systems to execute their missions. Calling a subsystem to execute its mission invokes its

update procedure. Subsystem update procedures consist of calls to subordinate subsys-

tems/primitive objects, as well as if and while statements which allow conditional and

iterative flows of control.

4.1.3.7 Save to Technology Base Since saved objects can be retrieved and

parsed back into the object base, a function must exist to store objects in the object base

into a file. The objects must be stored in the format required by the input procedure, that

is, the format must adhere to the specifications of the domain-specific and architecture

grammars. Saved application definitions can later be retrieved and loaded into the object

base. Objects can be retrieved either through the grammar or through the interactive

interface.

4.1.3.8 Generate Specification When the application specialist is satisfied

that the specified application behaves as desired, he can generate its formal specifica-

tion. The formal specification provides all the information necessary to directly code the

application into an efficient production system. Indeed, the formal specification generated

by this application composer is intended to be input to an automated code generation

facility.

4.2 Preliminary Design of the Application Composer

Development of the full-scale application generator described in Chapter III will re-

quire several years of research and experimentation. This thesis effort focuses on one aspect

of that project - the application composer and, more specifically, the Preprocess, Perform

Semantic Checks, and Execute components. The implementation of these components is

dependent on the choice of software architecture for the composed application. The Soft-

ware Engineering Institute's Object Connection Update (OCU) model was selected as the

software architecture for applications within Architect; the model can be easily formalized,

appears to be applicable to a variety of domains, and has been used successfully by the SEI

and other AFIT researchers (7, 40) for developing various simulators. This section briefly

4-7



reviews the OCU model, examines some of the goals/objectives of this implementation and

describes the data structures used to support it.

4.2.1 Review of the OCU Model The OCU model describes a software architecture

that is especially well-suited for developing software systems which can be "described as

a set of subsystems" (24:17). It consists of three kinds of components: primitive objects,

subsystems, and application executives.

4.2.1.1 Primitive Objects An object "models the behavior of a real-world or

virtual component and maintains (its) state" (24:19). It is passive, activated only by an

outside request to update its state. It is also very insular, aware only of its own internal

data and is oblivious to other objects in the system including the sources of the external

data it needs to update its own state. An object's internal data include (24:20-21):

"* Input-Data: Information which is external to the object but is needed to update the

object's state.

"* Output-Data: Information which results from updating the object's state and which

must be made available tG other entities external to the object.

"* Attributes: Descriptive characteristics of a particular instance of the object.

"* Current-State: Data which defines the current state of the object.

"* Coefficients: Data used in calculating the object's new state; cat be modified to alter

the object's behavior or state calculation.

"* Constants: Information about the object which can not be changed.

Objects can be activated only through the following common, procedural interfaces (24:20):

"* Update: Calculate the object's new state data (i.e., encapsulates the object's behav-

iorial description).

"* Create: Allocate a new instance of the object.

4-8



"* SetFunction: Change the function used to calculate the object's new state data

and/or change the object's coefficients which can alter the behavior of the current

update function.

"* SetState: Change the object's state data directly, bypassing the update function.

"• Destroy: Deallocate the object.

4.2.1.2 Subsystems A subsystem is an abstraction which represents a real-

world subsystem. Some examples include the engine, electrical and airframe subsystems

in a flight simulator. A subsystem consists of (24:18-19):

* A controller: "aggregates a set of objects (and possibly lower-level controllers) and

manages the connections between them" (24:18). It is "the locus of a mission and

the objects are services to carry out the mission" (24:18). Like primitive objects, the

controller is passive and insular, aware only of the objects it connects and unaware

of other subsystems in the application. A controller can be activated only by one of

the following procedural interfaces:

Update: "Update object-connection network based on state data in the import

area and provide new state data in the export area" (24:19). That is, it performs

the subsystem's mission.

Stabilize: "Converge subsystem consistent with current scenario and make ready

to operate... gets rid of transients" (24:19). In other words, it executes the

subsystem's mission an appropriate number of times to let the data and/or

algorithm converge to the proper value.

Initialize: "Activate supporting hardware... create objects and define object-

connection network" (24:19); i.e., create the subsystem and the subsystems/objects

which are controlled by it.

Configure: "Program the transfer characteristics of the controller and the ob-

jects" (24:19). Or, more simply, change some of the controlled objects' state

data, coefficients and/or update functions.

4-9



- Destroy: Deallocate the subsystem, as well as the subsystems/objects which it

controls.

"* An import arr -: the focal point for external data needed by objects within the

subsystem. It "makes the state data available to the objects by retrieving the data

from other subsystems' export areas upon request for the data" (24:19).

"* An export area: the focal point for data which is to be made available to external

application components. "Data is placed in the export area where it is available to

other subsystems' import areas" (24:19).

"* Objects: the primitive objects (and/or lower-level subsystems) which are needed to

accomplish the subsystem's mission.

4.2.1.3 Application Executive An executive is "an artifact of shared processor

computing and provides the operating environment for the system" (42). It serves an a

"activator" for the subsystems within the application, directing them to perform their

missions as needed. Executives monitor interfaces to external entities and "manage time,

the controllers (subsystems), and the application state to provide acceptable responses

to stimuli" (42). This implies that the executive is the highest-level component in an

application and encapsulates its mission.

4.2.2 Adapting the OCU Modelfor this Implementation The OCU model described

above has proved to be very beneficial in separating "reaction strategy (or mission) from

the providers of the strategic operations" (42). This separation is especially significant

to application composition systems, as it allows virtually an infinite number of different

missions to be created without changing the system itself. However, the OCU model is

currently used only by computer professionals as an off-line tool for designing and coding

new software systems; it is not used by end-users to dynamically compose applications

and simulate their behaviors, as Architect will allow. The end-product of the model's

usage to date has been fully-coded, unique software systems which satisfy a single (albeit

complex) requirement. As such, various interactions among elements of the model (espe-

cially import/export areas and subsystems) have been "hardcoded", based on the specific

4-10



requirements of a single application. An application composition system must be flexible,

capable of supporting a wide variety of applications in a wide range of domains and cannot

rely on "hardcoded" interactions. Clearly, some additional consideration must be given to

an implementation of the OCU model which precludes such "hardcoded" interactions.

4.2.2.1 Application Executive A fully-realized executive, capable of monitor-

ing/controlling time and interfaces to external entities, was deemed too ambitious for this

research effort, which is intended to demonstrate an application composition system "proof

of concept;" enhancements to the application executive will be added in the future. In this

implementation, an application consists of a collection of subsystems and an "executive

subsystem." This "executive subsystem" is the forerunner of a fully-realized application

executive and is treated as a specialized, high-level subsystem without import and export

areas. Due to this lack of interfaces to external entities (i.e., input/output capabilities),

there can be no external data; all data must be internal to the application.

4.2.2.2 Objects Architect expects that all to-be-combined components al-

ready exist; in fact, creating these components is one aspect of the system's Parse and

Complete Application Components phases. Moreover, dynamic (that is, run-time) cre-

ation and deletion of objects greatly complicates the application composition process; it

is extremely difficult to develop adequate semantic checks to ensure that such a proposed

application can be successfully executed under all conditions. Therefore, the Create and

Destroy OCU object procedural interfaces are not included in this implementation and are

left for future research.

4.2.2.3 Subsystems As mentioned above, Architect expects all to-be-combined

components to exist; this includes subsystems as well as objects. For reasons similar to

those described above, the Initialize and Destroy OCU subsystem procedural interfaces are

not implemented. In addition, due to some uncertainty about their utility, the Configure

and Stabilize subsystem interfaces also are omitted from this implementation.

4.2.2.4 Import and Export Areas A subsystem's import area is the focus of

external data needed by all objects aggregated by the subsystem and, conversely, the export

4-11



area is the focus of external data produced by those objects. Clearly, with dynamic com-

position, the application composition system must "know" what external data is needed

by/produced by each object to allow proper construction of import and export areas; this

should be quite easy to accomplish with an appropriately conducted domain analysis. But,

given dynamically and properly constructed import and export areas, how should they be

implemented and accessed to support the spirit of the OCU model?

There are several options for implementing import/export areas and their access

functions. They include:

"* Global Export Areas: All data which is to be made available externally to other

primitive objects is stored in a single, global area, similar to a FORTRAN common

area. When a primitive object requires external data, it is obtained directly from

this common export area.

This method, although easy to implement, violates the spirit of the OCU model,

which clearly intends import and export areas to be localized within subsystems and

to serve as the sole interface between primitive objects and the external data they

require.

"* Pre-Execution Data Retrieval or "Latching": Each subsystem has its own local im-

port and export areas. Immediately before a subsystem is executed, all required

external data is retrieved from appropriate export areas and copied into its import

area; the subsystem can then provide the data from its own import area when a

request is made for external data.

This approach certainly conforms to the OCU model description and ensures that all

imported values are temporally consistent. However, this method has a potentially

serious drawback: external data produced during a subsystem's execution cannot

be used in the same execution cycle by other primitive objects within the same

subsystem. This may be (and most likely, is) too restrictive, considerably limiting

the range of meaningful applications which can be created.

"* Point-of-Use Retrieval: Like the option described above, this method provides each

subsystem with its own local import and export areas. Unlike the earlier approach,

4-12



however, external data is retrieved as it is requested. This retrieval can be accom-

plished by the import area, which supplies the data directly to the requesting object

with no involvement by other elements of the subsystem.

This approach also conforms to the OCU model description which allows "objects to

access the import area's procedures directly" (24:19). It allows for very flexible sub-

system construction, as external data produced by one object within the subsystem

can be imported to another object in the same subsystem in a pipeline-type manner.

Certain temporal restrictions on the data (i.e., a value must be exported before it

can be used as an import) can be accommodated by judicious specification of the

application/subsystem. This is the approach which will be used in this application.

4.3 Goals/Objectives for the Application Composer Implementation

The design of the application composer was influenced by the following goals/objectives:

" The implemented code should be domain-independent; domain-specific information

should exist only in a technology base.

" An application should be expressible in domain-oriented terms as much as possible;

computer software terminology and conventions should be kept to a minimum.

" An application definition should consist of an application executive, in addition to

appropriate subsystem and primitive object components.

" A primitive object's mission is encapsulated within its update function. Subsystem

and application executive missions should be specified by the user - any automat-

ically generated mission would lack the flexibility required to adequately describe

all possible missions for all possible domains. However, certain patterns of control

may be identified for particular domains and may be applicable to a wide range of

subsystem/executive missions. Identification and implementation of such patterns of

control are left for future research.

"* Alternative flows of control should be available for use in specifying application execu-

tive and subsystem missions - sequential flow of control places too great a limitation

4-13



on mission specification. Therefore, IF-THEN-ELSE and DO-WHILE constructs

must be allowed. Further, variables must be allowed in if/while conditions to allow

meaningful conditions to be specified.

"* The application specialist should not be required to specify what external data is

required by and produced by the primitive objects within his application. This in-

formation is already available to the application composer as a by-product of domain

analysis and should reside in the technology base.

"* Objects and subsystems should be unaware of the source of external data, where it

is used, how it is stored, etc. This knowledge should be localized within import and

export areas.

"* External data needed by a primitive object should be retrieved as needed, not ob-

tained en masse prior to subsystem execution. This allows a primitive object to use

data just produced by another object within the same subsystem. With this retrieval

scheme, there is no need to store retrieved data in the import area; it can be passed

along directly to the requesting object.

"* The application specialist should reference imported and exported data by name.

This also pertains to identifiers in conditional expressions, as it has been established

that they reference import/export items.

"* The application specification should be complete before its behavior is simulated.

Therefore, all import-to-export connections must be established before the applica-

tion is executed. If more than one export datum can provide the information needed

by an import, the application specialist must be prompted to select the appropriate

one. If the application specialist truly does not care where the imported data comes

from, he should be able specify that an appropriate, arbitrary source be used. These

import-to-export connections are static; they are a fundamental aspect of the appli-

cation specification and are not changed dynamically during application execution.

4.4 Conventions Used in this Implementation

The following conventions are used throughout the application composer:

4-14



4.4.1 Conventions For the Software Engineer

"* All primitive objects have been correctly defined using the primitive object template

described in Appendix A.

"* All coded primitive object attribute/variable names are prefixed by the object's ob-

ject class. For example: COUNTER-OBJ-COUNT - represents an attributed named

COUNT which applies to objects of the class, COUNTER-OBJ. This scheme ensures

that attribute/variable names are unique throughout the domain and presents a more

domain-oriented (rather than programmer-oriented) "feel" to the application speci-

fication.

"* All update function names begin with the object class. Example: COUNTER-OBJ-

UPDATE1 is the name of the update function, UPDATE1, which is applicable to

primitive objects of the class COUNTER-OBJ.

4.4.2 Conventions for the Application Specialist

" The application specialist, when referencing update function names and coefficients

in setfunction statements and attributes in setstate statements, specifies only the

unqualified name. For example, the application specialist would specify

setfunction counterl updatel

to set COUNTERI's update function to COUNTER-OBJ-UPDATE1 and

setstate counterl (count, 2)

to set COUNTERI's COUNTER-OBJ-COUNT attribute to 2. This scheme allows

the application specialist to use more domain-oriented (rather than programmer-

oriented) terms and frees him from concern about object class names while preserving

attribute name uniqueness throughout the domain.

4-15



4.5 Data Structures to Support this Implementation

The data structures chosen to represent the data in a software system and the pro-

gramming language in which the code is written profoundly affect the system's implemen-

tation. For this implementation, we have selected the REFINE language and its grammar

processing facility, DIALECT. This choice virtually dictates Architect's fundamental data

structure: an abstract syntax tree. It also strongly encourages an object-oriented approach,

as DIALECT relies heavily upon objects in its processing.

Figure 4.3 illustrates the hierarchy of object classes developed for this implementa-

tion. USER-OBJECT, the highest level object in the REFINE object class hierarchy, is the

implied parent of each of the boxed object classes in the figure; this parent relationship has

been omitted to allow all other meaningful relationships to be presented in one diagram.

Figure 4.4 illustrates the attributes of each object class; for more detailed and technical

information about these object class attributes, refer to the REFINE code in Appendix D.

4.6 Summary

This chapter presented an overview of the high-level design of Architect, the ap-

plication composition system which was introduced in Chapter 3.5. Architect is heavily

dependent on the software architecture used to produce its compositions; therefore, the

selected architecture (the OCU model) was briefly discussed, as were various adaptations

which were made for this implementation. In addition, the goals/objectives of this appli-

cation composer implementation were enumerated. Lastly, several conventions and data

structures, which are used throughout the system, were presented.

4-16



0
= ~x0
UL

a) C

z
0 0

9M

00

.0 0 .-

CL

00 __ t

0L C

9t 00

C SCL

ow w
0~0

C0.-

m W r0 w

U. -L w CfL.i

00.

t To

E <

4-17



Spec-Obj Application-Obj Subsystem-Obj
Spec-Parts Application-Components - ControlleesL Application-Update - Import-Area

Call-bj -Exort-Area
Call-Obj If-Stmt-Obj H Update

Operand £ If-Cond Initialize

Then-Stints

Create-Call-Obj Ele-Stmts Name-Value-Obj
- Operand (Inherited) etName-Value-Value

Object-Type While-Stmt-Obj
S te a bWhle-Cond Source-ObjSetState-Call-Obj ,-- While-Stmts

Operand (Inherited) Ipt-Source-SubsystemState-Changes Import-Obj Source-Object
J Source-Name

SetFunction-CalI-Obj £ Import-Name
SImport-Category Export-O bj

Operand (Inherited) Import-Type-Data Export-NameFunction-Name Consumer Er
Coefficients Source - Export-CategoryI"- Export-Type-Data

Unary-Expression Binary-Expression [3- Value

L. Argument £ Argumenti
I-_Argument2 Boolean-Literal

Real-Literal String-Literal L- Boolean-Value
L.. Real-value L- String-Value Integer-Literal

Identifier /Int-Value
-Id-Na'me

Id-Source

Figure 4.4. Object Class Attribute Maps

4-18



V. Detailed Software Design

This chapter presents a detailed design of the Preprocess, Semantic Checks and Ex-

ecute portions of Architect, the application composition system introduced in Section 3.5.

It elaborates on the high-level design of these major functions discussed in Section 4.1,

meets the implementation's goals/objectives (reference Section 4.3), and conforms to the

conventions identified in Section 4.4.

5.1 Preprocess the Application

After the application is entirely defined, the structured object base contains "com-

plete", fully-instantiated components (from the application specialist's viewpoint). How-

ever, some critical data needed for further processing may not yet be specified; preprocess-

ing the application obtains such data from available system knowledge, making it accessible

in a more usable form and, thus, "completing" the specification. Two examples of such

critical, as-yet-unavailable data are subsystem import areas/export areas and the source

of identifiers used in if and while statements in subsystem update procedures.

Perform-Semantic-Checks I

Build-Import-Export-Are Determine-Sources-for-Coniditionals

I Determine-Import-Sources

Figure 5.1. Preprocess Application

A structure chart representing the preprocessing activity is presented in Figure 5.1.

Preprocessing is not an inherent requirement for all application composers; it evolved as

a requirement for this application composer due to our selection of the OCU architectural

model as its basis. Because it may not be required for a different application composer

implementation, preprocessing should be transparent to the application specialist; that is,

5-1



he should be virtually unaware of its existence. Therefore, although it is conceptually a

stand-alone component of this implementation, preprocessing has been incorporated into

the semantic check component.

5.1.1 Building Import and Export Areas The contents of an import area depend

upon the external data (input-data) needed by all the primitive objects which are con-

trolled by that subsystem; likewise, a subsystem's export area depends upon the data

(output-data) produced by all its primitive objects which must be made available to other

subsystems/objects. In keeping with our goal of constraining application specification to

domain-oriented rather than programmer-oriented terms, an application specialist should

not be required to specify the contents of import and export areas of the subsystems in

his application. Moreover, input-data and output-data for each class (or type) of primitive

object are available in the technology base as a consequence of domain analysis. Therefore,

the appropriate data for each import area and export area can be generated automatically,

given a list of the primitive objects which comprise the subsystem (the controls clause

serves as such a list). This automatic generation of import and export areas is accomplished

via preprocessing.

Figure 5.2 illustrates this process of automatically "building" the import and ex-

port areas. The upper portion of the figure represents a subsystem before preprocessing

is accomplished. Note that its objects "contain" input-data and output-data but that the

import and export areas are empty (input-data can be distinguished by the partitioning of

its rightmost segment into three horizontal parts; this will be explained later). Preprocess-

ing the subsystem transforms it into the representation at the bottom of the figure. Note

that all input-data for all objects within the subsystem have been copied to the import

area and all output-data to the export area. Also, note that the consumer object name

and producer object name have been added to import items and export items, respectively

(in the box, second from the right).

5.1.1.1 BUILD-IMPORT-EXPORT-AREA Each subsystem in an applica-

tion definition is examined. For each input data item for each primitive object controlled

5-2



Import Area Export Area

otub1

INI CATi INTEGERI Il IN CAT2 SOOLEA

M I CAT21 BOLEAJ OUTJ CAT21 BOOLEANI I

IOUTI CATII INTEGER OCUTJ CATI INTEGERI

Import Area Export Area

I~lir CA 800 OBJ2EMOEU

I INI I ~ ~ ~ ~ ~ ~ ~ ~ ~~ 1 CATII INTEGERI OBJJ2otolrf--Tý- "'GRIOj

1N2 jCrA8T2E40J 900 OUi CAI2 BOOLEANBJ2

OU(TIGATi VJTEGER I OUICATI I ITEGER

Figure 5.2. Build Import/Export Areas

5-3



by the subsystem, an entry is made in the subsystem's import area; likewise with output

data and the export area.

5.1.2 Determining the Source for Imports Merely specifying the contents of im-

port/export areas is inadequate to complete the application's specification with respect to

external data requirements. Under the OCU model, a primitive object's request for a piece

of external data (i.e., an import area entry) is satisfied by retrieving the appropriate data

from an export area in some subsystem within the application. To complete the specifica-

tion, these connections between each item in an import area and the export item which is

to provide its data must be made. In other words, the source of the data for each import

item must be specified. This, too, is accomplished via preprocessing.

When an import can be satisfied by only one export iAem (see Section 5.1.3), its

source can be automatically determined without user involvement. This is illustrated in

Figure 5.3. IN1, which is needed by OBJ2, and IN2, which is required by OBJ1, are both

of type CAT2; only OUT1, which is produced by OBJ2, can provide this type of data.

Therefore, OUT1 must be the source for these imports. The subsystem name, producing

object name, and output-data name of the source export item appear from top to bottom

in the import item's rightmost segment.

Import Area Export Area

INi AT2 IBOOLEAN IOaJ2 :Z

iN ICAT1i 1TEGER IoBJ1 Controlle IOI.TJ cAri INTGER I06.J1I

1N2 CAT21BOOL~EANI oe~j l1C1 BOOL 06J2

update obj2 PUr2 CATI INTGER I06J21

Subi upaeo2

Figure 5.3. Determine Import Sources - Part 1

However, the source of an import which can be satisfied by more than one export

item can not be determined automatically; the application specialist must indicate which

5-4



potential source should be used. Figure 5.4 represents the state of the import area after

the following source determination dialogue has taken place:

More than one export can provide the data for IN1
which is used by object OBJ1

in subsystem SUB1
Choose the export item (subsystem and component)

that you wish to be the source of this data:
1> subsystem "SUB1" component "OBJ1" name "OUIT1"

2> subsystem "SUBI" component "OBJ2" name "OUT2"
Enter the number corresponding to the source you want to use
2

Import Area Export Area

Figure 5.4. Determine Import Sources - Part 2

Note: these import-to-export connections can be made only after all import/export

areas have been constructed to ensure that all exports are considered as possible import

sources.

5.1.2.1 DETERMINE-IMPORT-SOURCES Each item in the import area of

each subsystem in the application definition is examined. If a source has not yet been

specified for that import, the export areas of all subsystems in the application are searched

for export items which could provide the needed data. Only export items which are of

the same data category as the import item can be considered as potential sources. If

only one export item produces data of the proper category to satisfy an import item, it

is automatically identified as the source. If more than one export item could provide the

5-5



required data, the application specialist is prompted to select the appropriate source from

a list of possible choices, which includes a "use an arbitrary one" option (to be used if the

application specialist doesn't care where the data comes from; it is anticipated that this

will be rarely used). If a source has been previously specified for the import item, it should

be displayed to the application specialist, who may select a different source at this time,

if desired.

5.1.3 Import/Export Considerations The following questions or considerations arose

during different phases of this design and its implementation. When feasible, a rapid proto-

type was constructed to answer these questions and to test various alternatives. There were

two underlying principles which dictated the choices made in answering these questions:

allow maximum flexibility for application specification and free the application specialist

from implementation details as much as possible.

1. How are the external data needed by and produced by a primitive object known?

One aspect of domain analysis is to determine what external information (INPUT-

DATA) is needed to adequately process (update) each class of primitive object and

what information must be made available externally to other objects (OUTPUT-

DATA). Implicit in determining each required INPUT-DATA and OUTPUT-DATA

is the identification of its name, category, and basic data type. Because INPUT-

DATA and OUTPUT-DATA are the same for each object instance in a particular

object class, this information can be pre-stored in the technology base and is therefore

available to be incorporated automatically into each newly created object of that

class.

2. Does each instance of a primitive object import the same value for a given variable

name? It seems likely that different object instances, which require external data

with the same name, may actually wish to obtain that data from different sources.

Therefore, only one entry in the import area for each required external variable name

is insufficient; the name of the requesting object must be maintained as well to ensure

that each primitive object's external data request accesses the correct import item.

When a piece of external data is required by a primitive object update function,

5-6



both the requested variable name and requesting object's name (consumer) must

be matched to ascertain the correct import area entry to be used in obtaining the

appropriate requested data.

3. Does a subsystem export only one value per variable name? Just as it was likely

that different object instances may obtain INPUT-DATA with the same name from

different sources, it is also likely that more than one object in a subsystem may

produce external data with the same variable name. Therefore, one entry in the

export area per variable name is insufficient; the producing object's name (producer)

must be maintained as well as the variable name and its associated value. When

data is to be stored into the export area, both variable name and producer name

must be matched to ensure that the correct export item is used.

4. How does an object obtain the external data that it requires? External data is

requested via a GET-IMPORT call whose parameters include the name of the data to

be obtained as well as the names of the requesting primitive object and its subsystem.

GET-IMPORT finds the appropriate import item within the subsystem's import area

which corresponds to this request and uses its previously specified source information

to directly obtain the needed data.

5. What is "source information?" It represents a connection between an import item

and the export item within the application which supplies the data to be imported.

Source information consists of the name of the subsystem in whose export area the

"source" export item can be found, the name of the primitive object which produces

that data, and the name of the data itself. This information uniquely describes the

export item from which the imported data is to be retrieved.

6. How does an export item qualify as the source of an import item? Each piece of

external data (both imports and exports) has a name, a data category and a data

type. Together with the subsystem name and the name of the consumer/producer

object, the name provides a means to uniquely identify an import or export item.

The data type indicates the item's primitive data type (integer, real, boolean, string

or symbol); this is used when dealing with identifiers in conditional expression..

The data category indicates the class of the data, in domain-oriented terms. For

5-7



example, an import might be expecting a real number (data type) but its category

may be water-temperature or air-pressure or interest-rate, etc., depending on the

requirements of the domain. Only those export items which are of the same data

category can be potential sources for the import. This scheme, in effect, creates

user-defiuicd, domain-dependent data subtypes (very similar to Ada subtypes) which

serve to constrain the possible data choices. In the previous example, although

export items representing water-temperature, air-pressure and interest-rate may all

be real numbers, only the water-temperature export can serve as the source for a

water-temperature import. In the current implementation, data category and data

type are related; all imports/exports of a given category are assumed to be of the

same underlying data type. If this later becomes too restrictive, conversion functions

may be required to allow disparate data types (e.g., integer and real) to be used

interchangeably within a data category.

7. What if more than one subsystem and/or object produces external data which qual-

ifies as the source of an import item? If more than one subsystem/object produces

data which can satisfy the request, the application specialist is prompted to indicate

which data should be used to satisfy the request rather than allowing the system to

choose arbitrarily. However, after the appropriate source is specified for a particular

request, the system should not prompt the user again if the same data is later re-

quested by the same object; it should "remember" which subsystem/object produced

the requested data and access it directly. To allow the system to "remember" such

information, source subsystem name and source object name are stored in the import

area in addition to the source's variable name.

8. What if the application specialist doesn't care where the requested data is obtained?

If only one export item can provide the requested data, it obviously should be used

as the data source. If more than one export item may produce the data, the system

should allow the application specialist to use an arbitrary source if any data of the

proper category will suffice. The "arbitrary source" option is provided in addition

to the specific subsystem/object choices discussed previously. If the application spe-

cialist selects the arbitrary source option, all future requests for the same data by

5-8



the same subsystem will be satisfied by the selection of an arbitrary source which

satisfies the data category requirement.

9. When an application is edited, what happens to the import and export areas of its

subsystems? The edit process can change any/all of the components already in the

application and can also add/delete objects to/from the application. Adding/deleting

objects from subsystems will likely change import and/or export areas; therefore, pre-

processing must be reaccomplished after each edit step. To ensure that preprocessing

is accomplished, a new-data flag is set each time the edit process is initiated. If the

new-data flag is set, preprocessing and semantic checks must be reaccomplished on

the entire application specification before its behavior can be simulated. During

preprocessing, import items are added to the subsystem's import area if there are

currently no import items for a primitive object and likewise for the export area; this

ensures that import/export areas are consistent for added subsystem components. A

"clean-up" operation is also conducted. Any import item used by a primitive ob-

ject which is no longer part of the subsystem is removed from the import area, and

likewise for the export area; this ensures that import/export areas axe consistent for

deleted subsystem components.

5.1.4 Determining the Source of Variables in Conditions If and while statements

within a subsystem update procedure provide the necessary flexibility which enables an

application specialist to precisely specify the required mission for any subsystem. Each of

these statements includes a conditional expression, the result of whose evaluation deter-

mines how the statement will be executed. In general, meaningful conditional expressions

include some variable data whose value changes during the current execution cycle or from

one execution cycle to the next. During specification, the application specification merely

provides a name or identifier for this variable data. To complete the specification, this

identifier must be associated with the data to which it refers. The only data directly

available to the subsystem's update procedure rcsides in its import and export areas;

therefore, the identifier must be found in one of these areas.

5-9



5.1.4.1 DETERMINE-SOURCES-FOR-CONDITIONALS Each identifier in

each subsystem update procedure in an application definition is examined. If the identifier

has not yet been associated with its corresponding data, the subsystem's import and export

areas are searched to find potential association candidates. If there is only one possible

candidate, use it as the identifier's source; if there are multiple potential candidates, present

the list to the application specialist who must select the appropriate one. No possible

candidates indicates a specification error. If the identifier/data association has already been

accomplished, the application specialist is notified, presented with the current association,

and may select a different association, if desired.

5.1.5 Considerations for Variables in Conditional Expressions As with the im-

port/export area considerations, these questions concerning variables or identifiers in IF

and WHILE conditional expressions had to be resolved before the design and implemen-

tation could be realized.

1. What variable data (identifiers) can be used in the conditional expressions of if and

while statements in subsystem update procedures? Identifiers must be recognized

by and available to the subsystem in whose update procedure they appear. The

OCU model does not provide a mechanism for a subsystem to directly access any of its

primitive objects' current-state data. The only data available to a subsystem resides

in its import and/or export areas. Therefore, an identifier can only be associated with

an import or export item. The application specialist specifies the identifier by name;

if an import or export item has the same name, it is a candidate for association. A

specification error occurs if there are no candidates within the subsystem.

2. How do you know that conditional expressions involving identifiers are valid (i.e.,

that you aren't trying to compare apples and oranges)? Each import and export

item has a "data-type" which corresponds to a REFINE primitive data type (e.g.,

integer, real, string, etc). It is used to ensure that conditional expressions can be

evaluated in a meaningful way.

3. If several imports and/or exports within a subsystem have the same name, how does

the system (and application specialist) determine which one applies to each variable

5-10



used in the conditional? As with determining the sources for imports, Architect

first finds all possible candidates (i.e., imports and exports with the same name as

the conditional variable). If only one item meets that criteria, it is obviously the

intended source and Architect automatically makes the connection. If, however,

there are multiple possible sources, the system prompts the user to select the desired

source from the a list of alternatives. The user may by-pass this source determination

dialogue by "qualifying" the variable name(s) in the conditional. This is achieved by

prefacing the variable name with the object which produces/consumes that item (this

assumes that imports and exports for the same object type do not share common

names). For example, if a variable in a condition refers to the import item named IN1

which is consumed by OBJ1, the user would specify the qualification as OBJi.IN1.

After sources for conditionals have been determined, it is impossible to differentiate

between qualified and unqualified variables.

5.2 Perform Semantic Checks

Two levels of semantic checks exist in Architect. Architecture-oriented semantic

checks ensure that the proposed application specification conforms to the composition re-

quirements of the OCU model and that its behavior can be successfully simulated (e.g.,

all components exist in the object base, application/subsystem update procedures directly

reference only components which are part of the same application/subsystem, data input to

one subsystem is produced as output by some subsystem in the application, etc.). Domain-

specific semantic checks are knowledge-based, building on what is known about the domain,

its objects, and previous applications created in that domain, to assist the application spe-

cialist in composing a meaningful and optimized application. This research effort currently

includes only architecture-oriented semantic checks; domain-specific semantic checks are

presently being investigated by Captain Mark Gerken, an AFIT doctoral student.

After preprocessing has been completed, architecture semantic checks are performed.

These semantic checks embody the constraints imposed on the composition of applications

within the framework of the selected architecture model (in this case, the OCU model).

They are derived solely from the structure of the architecture model and are domain-

5-li



independent. Each semantic check is encapsulated into a REFINE function; these functions

are executed via an appropriate sequence of function calls. Domain-specific semantic checks

are completed after the proposed application successfully passes the architecture semantic

checks.

IU I
c hk-I*- A pplIc i e- Chck-If-Swtroqhm-

Comlorients-Ends-t Exist

Check-for-Dirc !-U - Clheck-for-Dupes-in
of-Prinmvws Subsyslern

SCl k-for-Dues-in- I Check-for-Unused-Appl-b--,Oýpýe Componenis-irt-Updaft

Che•-Aor-Unuseo- il-&S&yslerm-Upal -Su•bsy~s"ien" inUpale iPr'ocedureI

SheI iie-s et

be performed on the entire application and its constituent subsystems. There are currently

no meaningful semantic checks for primitive objects; Architect assumes that primitive

object class definitions and update procedures have been correctly constructed by the

software engineer. A structure chart for processing semantic checks appears in Figure 5.5.

Architecture semantic errors describe conditions that preclude successful behavior

simulation of the application or present an unacceptable inconsistency which can not be

successfully resolved without human intervention. Warnings, on the other hand, represent

apparent inconsistencies in an application specification which may actually presage a com-

5-12



position error but do not preclude behavior simulation. However, they should be carefully

considered by the application specialist before proceeding. The semantic checks in this

implementation generate either errors or warnings, as appropriate.

5.2.1.1 Global Application Specification Semantic Checks The following checks

are conducted on the entire proposed application specified by the application specialist.

1. Each application specification must contain one and only one application executive

object. An example of a very simple application object is:

application applicationl is

controls: subsysteml, subsystem2

update procedure:

update subsysteml

update subsystem2

2. An instance of a primitive object can be part of only one subsystem within an ap-

plication. This restriction is necessary to ensure the integrity of each subsystem.

Only activities within the subsystem (and their inputs) affect the operation of the

subsystem; the states of the objects which comprise a subsystem are changed only

by executing the subsystem's update procedure. An object instance which is part

of two or more subsystems could cause spurious results because its state would be

determined by multiple subsystems.

3. Each application specification must contain all those (and only those) components

needed to compose the application. Unused subsystems (not included in an appli-

cation's controls clause nor incorporated into any other subsystem) and primitive

objects (not included in any subsystem's controls clause) may indicate an oversight

by the application specialist - perhaps he actually intended to use them in the ap-

plication but forgot to do so. If this anomalous condition is discovered, a warning is

issued.

5.2.1.2 Application Executive Semantic Checks The following checks are con-

ducted on each application executive found in the proposed application specification. In

5-13



theory, only one application executive exists per specification. However, in an effort to

provide the application specialist diagnostic information on all anomalies at the earliest

possible phase, all application executives are checked in this manner.

1. CHECK-IF-APPLICATION-COMPONENTS-EXIST: Subsystems listed in the con-

trols clause must already exist (i.e., be specified in the application definition). Note:

although the OCU model allows for dynamic creation of subsystems via an initialize

operation, there are several unaddressed issues regarding dynamic initialization, and

it has not yet been included in this implementation.

2. CHECK-FOR-DIRECT-USE-OF-PRIMITIVES: Only subsystems and subsystem pro-

cedural interfaces may be referenced in an application's controls clause and update

procedure; direct reference to primitive objects is not allowed. It is unclear whether

the OCU model itself allows arbitrary primitive objects to be included directly in an

application executive; certainly, such statements as "the OCU has most effectively

been applied when the software system under development can be described as a

set of subsystems" (24:17) imply the contrary. From an implementation viewpoint,

several unresolved issues regarding application executives (e.g., do they have facili-

ties similar to import/export areas and, if so, how should they work? Is it desirable

to have special, primitive objects for executives?) currently preclude the direct use

primitive objects.

3. CHECK-APPLICATION-UPDATE-PROCEDURE: At this time, only call state-

ments (i.e., the OCU subsystem update procedural interface) are valid in the ap-

plication update procedure. If and while statements are not allowed in this very

simple application executive implementation because no appropriate data is available

from which to construct (and evaluate) meaningful conditions. Recall that condition

variables must be accessable at the level at which they are specified and that there is

no provision in the OCU model to query a subordinate object about its state data.

This restriction was overcome for subsystems by associating condition variables with

import/export items. At the present time, no import or export areas are associated

with applications.

5- 1,1



" CHECK-IF-OPERAND-IN-APPLICATION Only subsystems included in the

application's controls clause may be referenced in its update procedure. This

constraint requires the application specialist to carefully consider which subsys-

tems are needed in his application before thinking about how they are to be

composed. It also allows Architect to compare the controls entries against the

operands in the update procedure as a consistency "double check."

" CHECK-FOR-LEGAL-CALL-STATEMENTS: Currently, only the update in-

terface is implemented for subsystems; too many unresolved issues remain to

implement the remaining subsystem interfaces (initialize, stabilize, configure

and destroy) at this time. However, in anticipation that future research efforts

will resolve these issues, the OCU grammar accepts these interfaces as valid

keywords; this REFINE function ensures that no attempt is made to actually

execute them.

4. CHECK-FOR-DUPES-IN-APPLICATION-COMPONENTS: Is an application com-

ponent listed more than once in the controls clause? Such a duplication may actu-

ally have been a typographical error and not what the application specialist intended.

A warning is generated.

5. CHECK-FOR-UNUSED-SUBSYSTEMS-IN-UPDATE: Are there any subsystems listed

in the controls clause which are not used as operands in the application's update

procedure? Such an omission may have been an oversight and additional state-

ment(s) should have been included in the update procedure to execute these sub-

systems. Or, the subsystem in question may have been included in the controls

clause erroneously. A warning is generated.

5.2.1.3 Subsystem Semantic Checks The following checks are conducted on

each subsystem found in the proposed application specification.

1. CHECK-IF-CONTROLLEES-EXIST: Components (subsystems and primitve ob-

jects) listed in the controls clause must already exist. Note: although the OCU

model does allow for dynamic creation of subsystems via an initialize operation and

5-15



primitive objects via the create interface, there are several unaddressed issues regard-

ing such dynamic creation; therefore, the create and initialize interfaces have not yet

been incorporated into this implementation.

2. CHECK-SUBSYSTEM-UPDATE-PROCEDURE: All of the statements within the

subsystem's update procedure must be examined to ensure that only legal actions

are specified. Various semantic checks are executed, depending on the type of state-

ment encountered.

" CHECK-IF-STATEMENT: If conditions must be valid - each condition must

be reduceable to a boolean expression, all identifiers referenced must be available

in the subsystem's import and/or export area, data types within the condition

must be compatible with each other and with the operation specified (e.g., arith-

metic operations can not be performed on data of type STRING). In addition,

all the statements within the if statement (both the then and else clauses)

must be valid.

"* CHECK-WHILE-STATEMENT: While conditions must conform to the same

restrictions as if conditions; during semantic checking, no distinction is made

between if and while conditions. In addition, all statements within the while

loop must be valid.

"* CHECK-IF-OPERAND-IN-SUBSYSTEM: Controllers (i.e., subsystem update

procedures) may access only those components (subordinate subsystems and

primitive objects) which are part of the subsystem (that is, included in its

controls clause). Currently, the application specialist indicates which compo-

nents are part of the subsystem and then specifies the update procedure for the

subsystem. This semantic check is actually a consistency check to ensure the

controls clause and update procedure are compatible. This check is applied

to all call statements.

- Should the application specialist be required to explicitly specify the com-

ponents which comprise a subsystem? Doing so allows the above described

consistency check between the controllees and the update procedure to be

5-16



performed as a "double check"; this check has proved helpful during testing

to keep the application specification "on-track." Or, should the aggrega-

tion be implicit based on the components included in the update procedure?

This approach would make it tedious to check which components comprise

the subsystem and does not allow the "double check" mentioned.

" CHECK-SETFUNCTION-STMT: The function name and coefficients specified

in a setfunction statement must be valid. That is, the function~name must

identify an existing function and the parameters of that function must include

a primitive object of the same type as the object specified as the operand of

the setfunction statement. Each coefficient specified must be valid for the

statement's operand.

- Should the application specialist be required to specify the complete func-

tion name (which may be quite long and code-like, especially if it is prefaced

by its associated object class type as Architect requires)? Or, should the

application specialist be required to identify just the latter portion of the

name, the distinguishing part? Keep in mind, the entire function name can

be generated by Architect easily by prepending the object class of the state-

ment's operand to this distinguishing name. In an effort to keep Architect

very domain-oriented rather than programming-oriented, we have opted to

take the latter approach, constructing the entire function name given just

its distinguishing portion.

" CHECK-SETSTATE-STMT: State variables and their new values specified in a

setstate statement must be valid. That is, the variable name must identify an

actual attribute of a primitive object of the same type as the object specified as

the operand of statement and the new value must be of the same data type as

required for that attribute. Note: as with the function names in setfunction

statements and for the same reason, the application specialist specifies just the

distinguishing part of each attribute name; Architect automatically generates

the complete name by prepending the object class name to this distinguishing

part.

5-17



3. CHECK-FOR-EXPORTS-CORRESPONDING-TO-IMPORTS: Input data required

by one subsystem must be produced as output data by another subsystem within

the application. If no subsystem exports data which can serve as the source for the

input-data, the execution simulation can not be processed correctly.

9 This check ensures that, for each import item, at least one export item can

be found that produces suitable data, i.e., that some subsystem is potentially

capable of producing the needed data. It can not, however, assure that the cor-

rect data is actually available when needed during the behavior simulation. For

example, assume that SUBSYSTEM1 produces an export named OUTPUT1 of

category TYPE1 and SUBSYSTEM2 requires an import named DATA1 of cate-

gory TYPEL. If SUBSYSTEM2 is executed before SUBSYSTEM1, OUTPUT1

will not actually be available when needed. Further, using the above example,

even if SUBSYSTEM1 is executed before SUBSYSTEM2, there is no guarantee

that a valid OUTPUT1 will be available to SUBSYSTEM2; it could be produced

in a conditional statement whose condition is not met during execution.

4. CHECK-FOR-DUPES-IN-SUBSYSTEM: Is a subsystem component listed more than

once in the controls clause? Such a duplication may actually have been a typograph-

ical error and not what the application specialist intended. A warning is generated.

5. CHECK-FOR-UNUSED-COMPONENTS-IN-UPDATE: Are there any subsystems

or primitive objects listed in the controls clause which are not used as operands in

the subsystem update procedure? Such an omission may have been an oversight

and other statements need to be added to the update procedure. Or, the subsys-

tem/primitive object may have been included erroneously in the controls clause. A

warning is generated.

5.3 Simulate Execution

After the proposed application specification passes all semantic checks, it is fully

specified and there are no obvious specification errors which would preclude behavior sim-

ulation. Ideally, this behavior simulation or execution demonstrates to the application

5-18



specialist that the application he has specified does, indeed, behave as intended. If the

application does not behave as intended, the application specialist may edit the offend-

ing application specification to "correct" ;t or may begin again with another complete

application definition.

Find-and-Execute-Application

IExecute-Statement

Exxecute-Statement
Do-Call-Stint Do-If-Stint Do-While-Stint

Stunction Execute-Statement rExecute-Statement

SSetState_

Execute-Subsystem]

- I
Execute-Statement

Figure 5.6. Execute Application

Figure 5.6 presents a structure chart illustrating the behavior simulation process. Ap-

plication execution is accomplished by invoking EXECUTE-STATEMENT for each state-

ment in the application update procedure. Semantic checks haie already verified that all

the statements within this update procedure are call statements (i.e., updates) whose

operands are subsystems - due to the simplicity of the currently implemented application

executive, if and while statements are not allowed in the application executive's update

procedure.

The mission of a subsystem is performed by EXECUTE-SUBSYSTEM 4, which calls

EXECUTE-STATEMENT for each statement in the subsystem's update procedure. EXECUTE-

5-19



STATEMENT performs the appropriate action for the type of statement (e.g. call, if,

while) encountered.

5.3.1 Call statements Call statements are processed by DO-CALL-STATEMENT,

which performs the appropriate function based on the type of call requested.

9 update If the operand of the update is a subsystem, EXECUTE-SUBSYSTEM is

called to perform its mission. If the operand of the statement is a primitive object, the

current value of UPDATE-FUNCTION is retrieved and serves as the first parameter

to the lisp FUNCALL function. The value of this first parameter determines which

REFINE function is to be invoked. Thus, FUNCALL provides a mechanism which

allows dynamic, run-time determination of the function to be called and allows the

behavior simulation code to remain domain-independent.

Figure 5.7 depicts the syntax and semantics of an object update call. The syntax for

the call is presented, followed by a sample statement. The rectangle represents the

statement's operand, widgetl. The current value of widgetl's update-function (in

this case, widget-obj-updatel) becomes the first parameter to the lisp FUNCALL

function; its succeeding parameters serve as parameters to the function invoked by

FUNCALL (in this case, widget-obj-updatel).

update <object-name>

example: update widget1
widget1

update-function widg et-obj-updatel No. funcall(widget-obj-updatel ,
subsystem1, widgetl)

Figure 5.7. Primitive Object Update Execution

5-20)



e setfunction The update-function of the statement's operand is replaced by the

function name specified in the statement. In addition to changing the value in

its operand's UPDATE-FUNCTION, the setfunction statement also provides the

means to change the current value of any or all of its operand's coefficients. This is

pictured in Figure 5.8 which shows the statement's syntax and a sample statement,

as well as the effect of executing that sample statement. Because one of our goals is to

make application specification a domain-oriented rather than programmer-oriented

process, the application specialist is not required to (in fact, should not) specify the

entire update function name; the entire name is constructed by prepending the name

of the primitive object's object class to the function name specified by the appli-

cation specialist. Note: the semantic checks, which must be successfully performed

before the behavior simulation can begin, assure that the specified function name

and coefficient/value pairs are legal.

setfunction <object-name> <new-update-function-name> (coefficient 1 , new-value 1 )*

example: setfunction widgeti update2 (coefl, 15) (coef2, 4.7)

widget1 widgeti
(ooefl, 40) (coefl, 15)

coefficients (coef2, 1.9) (coef2, 4.7) coefficients

update-function widget-obj-updatel widget-obj-update2 update-function

Figure 5.8. SetFunction Execution

* setstate Setstate enables the application specialist to directly change the value of

any of its operand's attributes (unlike the OCU model, this implementation does

not make a distinction between "attributes," "state data," and "constants," all of

which may be changed via setstate). The syntax, a sample statement and the

effect of executing that statement are depicted in Figure 5.9. As with the update

function name, the entire attribute name is automatically generated by prepending

5-21



the operand's object class to the attribute names specified by the application special-

ist. Again, note: the semantic checks, which must be successfully performed before

behavior simulation can begin, assure that the specified attribute names and their

new values are legal.

setstate <object-name> (attribute 1 , new-value 1 )*

example: setstate widget1 (a, 14) (b, 5.5)

widget1 widget1

attributes w attributes
widget-obj-a: 20 widget-obj-a: 14
widget-obj-b: 0.0 widget-obj-b: 5.5

widget-obj-c: *off* widget-obj-c: 'off'

Figure 5.9. SetState Execution

5.3.2 If Statements If statements are executed via DO-IF-STIlT. If the IF-COND

evaluates to true, the statements following the then are executed. If the IF-COND eval-

uates to false, the statements following the else axe executed (or the statements fol-

lowing the end if if no else is specified). The condition is evaluated via EVALUATE-

BOOLEAN-EXPRESSION; the then and else statements are executed by a sequence of

calls to EXECUTE-STATEMENT.

5.3.3 While Statements While statements are executed via DO-WHILE-STMT.

The WHILE-COND is evaluated; if it is true, the statements within the while loop are

executed via calls to EXECUTE-STATEMENT and then the WHILE-COND is reevalu-

ated. Execution continues in this manner until the WHILE-COND evaluates to false, at

which time execution proceeds to the statement following the end while.

5-22



5.4 Summary

This chapter presented a detailed design of the Preprocess, Semantic Checks, and

Execute portions of Architect, the application composition system which was implemented

during this research effort. Where relevant, detailed discussions of design considerations

and implementation alternatives were presented to explain the decisions that were made.

5-23



VI. Validation Domain

To demonstrate the suitability and effectiveness of Architect, the application com-

position system described in the previous chapters, one must select a domain, conduct a

analysis of that domain, construct an appropriate technology for it, and compose useful

applications within that domain. This chapter examines the domain that was selected for

this validation process: logic circuits. After a discussion of the domain analysis, the valida-

tion results are summarized and an assessment of the application composer's performance

is presented.

6.1 Background

To further understand the OCU software architecture model and its implications,

Architect was first tested using a pedagogical domain consisting of gadgets, widgets, things,

contraptions and glibsnitzes. This nonsensical domain enabled us to concentrate on the

fundamentals of implementing the OCU model, free of the built-in biases, constraints,

and limitations inherent in a "real" domain. This freedom allowed experimentation with

various implementation strategies, with the goal of developing a very general approach

which could be used successfully on all future application domains.

Because there were no constraining associations between the domain's objects and

"real world" entities, domain modeling was trivial. However, an effort was made to provide

each class of primitive object with at least one attribute/state data, covering the gamut of

REFINE data types to ensure that Architect could effectively handle each one. In addition,

object update functions were developed to be fully capable of exercising all aspects of the

OCU model.

The knowledge and experience gained through experimentation with this pedagogical

domain allowed a smooth transition into the official validation domain.

6.2 Logic Circuit Domain

A subset of the logic circuit domain was chosen as the validating domain for this

application composer. It is well-known, well-understood, can be used to compose a wide

6-1



variety of practical applications, and the behavior of its components can be easily described

(an important consideration given the limited time resources available for this research

effort). Refer to Appendix A for a standard template for describing a primitive object

within this application generation system. Appendix E contains the logic circuit domain

modeled in the REFINE language.

6.2.1 Domain Analysis - Part I

6.2.1.1 Identification of Primitive Objects The first step of the domain anal-

ysis was to determine which objects should be included in the validating domain. The

following were obvious choices for primitive objects within the domain:

"* AND gate

"* OR gate

"* NAND gate

"* NOR gate

"• NOT gate

In the real world, none of the above objects has persistent state data that helps to

determine the result of its next update; state data is a key aspect of the OCU model

from which we developed this application composition system. Although the following

component could be constructed from the gates identified above, it was included as a

primitive object to provide an example of state data manipulation.

e JK FLIP-FLOP

The implemented application composer uses a simplified application executive which

does not support external I/O. Therefore, all data used in the application must be gener-

ated within the application and any data produced by the application which is of interest

to the application specialist must be handled within the application itself. To accommo-

date these temporary restrictions, the following objects were included in the domain to

generate data and display it to the application specialist, respectively:

6-2



"* SWITCH

"* LED (light emitting diode)

6.2.1.2 Identification of State, Attribute and Constant Data Unlike the OCU

model upon which it is based, this implementation makes no distinction among these

categories of information which pertain to primitive domain objects. All of these data are

treated in the same manner and stored as REFINE object attributes.

"* AND gate, OR gate, NAND gate, NOR gate, NOT gate

- gate delay: integer

- manufacturer: string

- meets military specifications?: boolean

- power required by/consumed by gate: real

"* JK FLIP-FLOP

- gate delay: integer

- manufacturer: string

- meets military specifications?: boolean

- power required by/consumed by gate: real

- set-up delay: integer

- hold delay: integer

- state: boolean

" LED

- manufacturer: string

- color of display: symbol

"* SWITCH

6-3



- manufacturer: string

- debounced?: boolean

- gate delay: integer

- position of switch: symbol (on or off)

6.2.1.3 Identification of Object Update Functions Under the OCU model, an

object's behavior is encapsulated in its update function.

"* AND gate: The gate's output is the result of the boulean AND operation on its two

inputs.

"* OR gate: The gate's output is the result of tLz boolean OR operation on its two

inputs.

"* NAND gate: The gate's output is the inverse of the boolean AND operation on its

two inputs. See Table 6.1.

Table 6.1. Truth Table - NAND gate

IX k Y IXNANDY]
0 0 1

0 1 1
1 0 1

1 1 0

"* NOR gate: The gate's output is the inverse of the boolean OR operation on its two

inputs. See Table 6.2.

Table 6.2. Truth Table - NOR gate

IX Ii II xNORY

1 0 o
1 1 o

"* NOT gate: The gate's output is the inverse of its input.

6-4



"* JK FLIP-FLOP: If there is no clock input (i.e., it is false), the flipflop's state does

not change. If there is a clock input, the Ilip-flop's state may change depending on

the inputs and its current state. The truth table for a JK FLIP-FLOP appears in

Table 6.3.

Table 6.3. Truth Table - JK FLIP-FLOP
clock JIKII K New Q I New Q

0 x x old Q . (oldQ)
1 0 0 old Q $ (oldQ))
1 0 1 0 1
1 10 1 0
1 1 1 -,•._(oldQ) old Q

"* SWITCH: If the switch is in the "on" position, its output is true; if the switch is in

the "off" position, its output is false.

"* LED: The LED displays, in English, the value of its input.

6.2.1.4 Identification of Object Input-Data and Output-Data As previously

described, under the OCU model, input-data represents external data required by an object

to effect its update properly; output-data represents data from an object's update which

must be made available to other objects in the application. With the identification and

description of the update functions for each primitive object, this data is now obvious.

"* AND gate, OR gate, NAND gate, NOR gate:

- Input-data: iml, in2 = signal data whose primitive data type is boolean.

- Output-data: outl = signal data whose primitive data type is boolean.

"* NOT gate:

- Input-data: inl = signal data whose primitive data type is boolean.

- Output-data: outl = signal data whose primitive data type is boolean.

"* JK FLIP-FLOP:

- Input-data: J, K, clock = signal data whose primitive data type is boolean.

6-5



- Output-data: Q, Q-bar = signal data whose primitive data type is boolean.

"* SWITCH:

- Input-data: none.

- Output-data: outi = signal data whose primitive data type is boolean.

"* LED

- Input-data: inl = signal data whose primitive data type is boolean.

- Output-data: none.

6.2.2 Domain Analysis - Part II The logic circuit domain, as defined in Sec-

tion 6.2.1, proved to be inadequate to fully demonstrate all aspects of the application

composer implemented during this research effort. Specifically, each primitive object's

behavior can be fully specified using a single update function; Architect's capability to

dynamically change from one update function to another and, thus, to change an object's

behavior could not be demonstrated in a meaningful way. In addition, no primitive ob-

jects possessed any coefficient data; the ability to change the effects of a particular update

function by changing the value of one or more coefficients used in its calculation could not

be shown. This shortcoming in the logic circuit domain was overcome by adding a new

primitive object (COUNTER) and by adding an additional update function for the LED

object.

6.2.2.1 Identification of Primitive Objects The following primitive object was

added to those already identified in Section 6.2.1.1:

* COUNTER

6.2.2.2 Identification of State, Attribute and Constant Data No changes were

necessary to this descriptive information previously identified in Section 6.2.1.2. For the

newly identified primitive object:

* COUNTER

6-6



- gate delay: integer

- manufacturer: string

- meets military specifications?: boolean

- power required by/consumed by gate: real

- count (state data): integer

6.2.2.3 Identification of Object Update Functions Except for LED, all the

update functions identified in Section 6.2.1.3 are unchanged.

"* LED:

- T-F-UPDATE: If the input is true, display "true" else display "false".

- ON-OFF-UPDATE: If the input is true, display "on" else display "off".

"* COUNTER: If the reset input is true, set counter to 0 else if the clock input is true,

add one to the counter. If the count is greater than the maximum value for the

counter, reset counter to 0. The maximum value for the counter is a coefficient; it

can be dynamically modified during behavior simulation.

6.2.2.4 Identification of Object Input-Data and Output-Data All input-data

and output-data identified in Section 6.2.1.4 remain unchanged. Input-data and output-

data for the new primitive object follow:

e COUNTER:

- Input-data: clock, reset = signal data whose primitive data type is boolean.

- Output-data: lsb (least significant bit), msb (most significant bit) = signal data

whose primitive data type is boolean.

6.2.2.5 Identification of Coefficient Data Coefficients, if applicable for an ob-

ject, are used in calculating its new state; changing a coefficient can alter the object's

behavior or state calculation. The following coefficients apply to this domain:

6-7



* COUNTER

- max-count: Represents the maximum value to which the counter can count.

Because the counter's output is limited to two bits (to simplify the connection

process), permissible values for max-count are the integers, 0-3. The default

value is 3.

6.2.3 Domain Analysis - Part III The logic circuit domain identified and described

in Sections 6.2.1 and 6.2.2 is adequate to construct any desired electronic circuit; its prim-

itive objects are the fundamental building blocks of all real-world circuits. However, com-

posing large scale circuits from these very primitive components is tedious, at least partially

due to the current lack of an effective visual interface. Inclusion of "higher-level primi-

tives," objects which can be constructed from combinations of existing primitive objects

but are treated as primitive objects within the framework of this system, can simplify this

tedious connection process for larger circuits. Furthermore, these higher-level primitives

illustrate an important concept: what constitutes a "primitive object" depends on the

context in which it is to be used.

6.2.3.1 Identification of New Primitive Objects The following "higher-level"

primitive objects were added to the logic circuit domain to simplify the connection process

for large circuits as well as to illustrate the feasibility/utility of including "higher-level

primitives" within a domain:

"* DECODER (3-to-8 Line)

"* HALF ADDER

"* MULTIPLEXER (4-Input MUX)

6.2.3.2 Identification of State, Attribute and Constant Data

"* DECODER

- delay: integer

- manufacturer: string

6-8



- meets military specifications?: boolean

- power required by/consumed by component: real

"* HALF ADDER

- delay: integer

- manufacturer: string

- meets military specifications?: boolean

- power required by/consumed by component: real

"* MULTIPLEXER

- delay: integer

- manufacturer: string

- meets military specifications?: boolean

- power required by/consumed by component: real

6.2.3.3 Identification of New Object Update Functions

"* DECODER: The three inputs, taken together, represent a three-digit binary number.

One of the eight output lines (numbered 0-7) is set to true depending on the value of

this binary number. The truth table for a 3-to-8 line decoder appears in Table 6.4.

Table 6.4. Truth Table - 3-to-8 Line Decoder

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 O 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
11 0 0 0 0 0 0 0 1 0

1 1 0 0 0 0 0 0 1 01

6-9



* HALF ADDER: The two inputs, each representing a single binary digit, are added

together, producing the sum output. The second output, carry, represents the carry-

out and is set if the sum can not be represented in one binary digit. The truth table

for a half adder appears in Table 6.5.

Table 6.5. Truth Table - Half Adder
X I xY 1 Sum] Carry ]

0 0 0 0
0 1 1 0
10 1 0
111 0 1

* MULTIPLEXER: Two of the inputs (the "select" lines) determine which one of the

other four inputs will be used to set the output. The function table for a 4-input

multiplexer appears in Table 6.6.

Table 6.6. Truth Table - 4-Input Multiplexer

[S 10[ Output

0 0 10

0 1 t1
1 0 12

1 1 /13

6.2.3.4 Identification of New Object Input-Data and Output-Data

* DECODER:

- Input-data: in1, in2, in3 = signal data whose primitive data type is boolean.

- Output-data: mO, ml, m2, m3, m4, mS, m6, m7 = signal data whose primitive

data type is boolean.

* HALF ADDER:

- Input-data: in1, in2 = signal data whose primitive data type is boolean.

- Output-data: s (sum), c (carry) = signal data whose primitive data type is

boolean.

6-10



* MULTIPLEXER:

- Input-data: inO, inl, in2, in3, sO, sl = signal data whose primitive data type is

boolean.

- Output-data: outl = signal data whose primitive data type is boolean.

6.3 Summary of Results for the Logic Domain

Using Architect, several electronic circuits were constructed from the primitive ob-

jects of the logic circuit domain and their behaviors simulated. In all cases, when the

application was specified and composed properly (that is, all import-export connections

were correctly made), the expected results were achieved. Table 6.7 lists some of the

circuits tested during this validation phase and summarizes certain statistics about their

compositions. Examples of these composed circuits are contained in Appendix C.

Table 6.7. Summary of Validation Results

Circuit Number of Primitives Number of Connections

Decoder from low-level primitives 30 43
Decoder from high-level primitive 12 11

Full Adder 13 16
BCD Adder 43 61

Binary Array Multiplier 14 16
Universal Shift Register 25 44

6.4 Conclusions

The pedagogical domain of widgets, gadgets, etc. proved extremely useful during

initial testing of the system's application composer. Its non-association with "real world"

entities provided a freedom to fully explore the mechanics of implementing various aspects

of the OCU (primarily import/export issues), as well as a suitable base from which to

test the system's manipulation of all REFINE primitive data types. A pattern evolved in

creating primitive object descriptions which became the standard template to be followed

for all such descriptions, regardless of domain. Its nonsensical nature further underscored

the need to keep the application composer free of domain-specific references.

6-11



The application composer performed very well when the the pedagogical domain was

replaced by the logic circuit domain. The semantic analysis and behavior simulation pro-

cesses required no modifications. However, with the advent of a real domain, shortcomings

were identified with the import/export process. Originally, imports were associated with

their corresponding exports by matching data names only. In a pedagogical domain that

could be constructed in any manner to suit the circumstances, this was no disadvantage.

With a real domain, this scheme for matching imports to exports was quickly exposed as

inadequate and overly restrictive. Import/export names were retained for internal refer-

ence only and an import/export data category was added. The data category, described

in Section 5.1.3, serves as the discriminator for determining potential import/export con-

nections; this is its sole function. This system modification, though made in response to

the logic circuit domain, is clearly an improvement which will likely satisfy most other

application domains.

Proper analysis of any potential domain is essential to maintaining the application

composer's domain independence. The composer must be free of inappropriate, domain-

specific adaptations which would further complicate software maintenance and limit Ar-

chitect's usefulness and flexibility. Difficulties in modeling the domain must be carefully

evaluated before modifications to the composer are considered to accommodate pecularities

of the domain: can the domain be described in different manner to overcome this apparent

problem? is the proposed modification applicable to other domains? During logic circuit

domain analysis, for example, various aspects of the domain appeared to be difficult to

model. In most cases, an alternative modeling approach was found to represent the infor-

mation within the context of the existing composition system. In one case mentioned in

the previous paragraph, the proposed modification was deemed to be appropriate for most

other domains as well; the change was incorporated into Architect.

Architect is a domain-independent system. Its straightforward design easily accom-

modated its extension into the logic circuit domain. Rigorous adherence to the paradigm

established by the primitive object template discussed in Appendix A results in primitive

objects which fit properly into Architect's framework. This is a flexible system which

appears to be capable of being used for a wide variety of application domains.

6-12



VIL Conclusions and Recommendations

This chapter provides a summary of the accomplishments of this thesis effort. It also

discusses the conclusions which can be drawn from this work and presents some recom-

mendations for further research.

7.1 Summary of Accomplishments

The objective of this research was stated in Chapter 1:

Develop a formalized model of a software architecture and implement it within
a domain-specific application composition system.

To that end, the current literature on software architectures was examined and various

architectures evaluated in an attempt to find an existing one suitable for composing appli-

cations within our system. One such architecture, the Object-Connection-Update model

which was developed by the Software Engineering Institute, was studied at length and was

ultimately selected:

"* It had been used successfully to design and implement various other projects at the

SEI and AFIT (23, 7, 40)

"* It was described, in considerable detail, in several publications (23, 24, 42)

"* It was capable of supporting our application composition system.

The OCU model was formalized using the REFINE wide-spectrum language into a formally

specified, executable prototype. This prototype of the application composer was validated

using the logic circuit domain.

7.2 Conclusions

The following general conclusions can be drawn from this research:

7-1



1. Application composition systems, such as that described in Chapter III, are feasible.

This was clearly demonstrated in Appendix C, where several complex logic circuits

were constructed using Architect.

2. Non-programmers, who are very knowledgeable about a particular domain, can create

quite sophisticated applications without the direct assistance of software profession-

als. These application specialists, armed only with detailed knowledge about their

own domains and an application composition system with an appropriately mod-

eled domain-specific technology base, can quickly construct effective (they behave as

intended) applications to satisfy virtually any requirement within the domain.

3. A suitable software architecture is an essential ingredient of a flexible, domain-

independent application composition system. The software architecture allows the

system/application designer to conc2ntrate on the fundamental elements of construct-

ing a system/application: what components must be included and what connections

are appropriate among those components. How those connections are actually made

is the software architecture's concern. This separation of concerns allows the focus

to be on what should be constructed, not how it is to be implemented; we can expect

such a focus to produce better designed, more reliable systems.

The following specific conclusions can be drawn about Architect, the application

composition system which was developed during this thesis effort:

1. Architect works. A wide range of electronic circuits were constructed during testing,

some of which are presented in Appendix C.

2. Architect is readily extensible. Initially, to demonstrate the feasibility of the sys-

tem concept and to evaluate various implementation strategies (primarily for im-

port/export areas), a pedigogical domain was used. It was a simple matter to re-

orient the system to the logic circuit domain, an effort which required only three

manhours (the time needed to created a new domain-specific language and technol-

ogy base). Changing domains required no modifications to the composition system

source code; only the domain-specific technology base (and DSL) required changes.

7-2



The template in Appendix A should be helpful to software engineers who must main-

tain the technology base.

3. Domain analysis is critical. An application composition system provides only the

framework around which domain applications can be constructed; the technology

base supplies the details. The contents of the technology base depend directly upon

the results of a domain analysis. An ideal domain analysis will identify all the ap-

propriate objects within the domain and will describe them properly (attributes,

input-data, output-data, update functions, etc.); virtually any meaningful applica-

tion within the domain can be constructed when all the necessary objects are prop-

erly identified. A typical domain analysis will omit some necessary domain objects

and/or improperly describe them; applications can not be composed correctly if the

necessary components are not available and can not behave as required if the compo-

nents are incorrectly defined. The good news: because Architect is easily extensible,

oversights and incorrectly defined objects can be quickly fixed once identified.

4. Software engineers who work with Architect must clearly understand the OCU model

and its implementation. A domain analysis may identify a situation which apparently

can not be accommodated by the OCU model. For example, if a primitive object

has two update functions, each of which performs a different operation with different

input-data and output-data (a situation which can not be handled by the model),

an unwary software engineer might be tempted to change the implementation to

accommodate it.

5. Making connections between import items and the export items that are to provide

their data requests can be very tedious in some domains using the current system;

a glance at some of the application specifications in Appendix C clearly illustrates

this point. The visual system will alleviate this problem. However, even without the

visual system, meaningful, complex applications can be constructed; it just takes a

bit of time and effort.

6. The use of the Software Refinery environment, with its integrated language definition

facility (DIALECT), graphical user interface (INTERVISTA), and programming lan-

guage (REFINE) which incorporates many built-in object manipulation functions,

7-3



greatly simplified and expedited the implementation of Architect. With DIALECT,

parsers for domain-specific and architecture languages were easily generated from

simple BNF descriptions of the languages. Output from these DIALECT-generated

parsers was automatically converted into an abstract syntax tree format and stored

in the structured object base. The REFINE language's built-in functions provide an

easy way to manipulate the object base and its standard programming language con-

structs supply the functionality expected of any high-level programming language; in

fact, its direct support of set theory and set-based operations provides more power

than can be achieved with most commonly used languages. The availability of these

powerful, well-integrated tools eliminated the need to write comparable tools; this

significantly shortened the development process.

7.3 Recommendations for Further Research

The following issues should be addressed in future reseach efforts:

1. Code generation - The application composition system described in Chapter III

includes a formal specification generation capability which is intended to feed an

automatic code generator. Currently, the behaviors of application specifications,

which are created by application specialists, can be simulated to verify that behavior.

However, this is merely a simulation and is neither robust nor efficient enough to

support a production system.

2. Extending Domains - Architect, as currently implemented, does not provide any au-

tomated support for extending the domain knowledge which resides in the domain

model. Extensions to the domain model must be made manually and are limited

by the knowledge and understanding of the domain engineer. The Kestrel Interac-

tive Development System (KIDS) should be studied to ascertain its ability to allow

automated extensions to Architect's domain models.

3. Application executive - Only a very simple application executive was considered in

this implementation. This "application executive" was merely a specialized, highest

level subsystem. Obviously, such a simple approach is inadequate for most mean-

7-4



ingful, production domains. What should be the role of an executive? How does

the executive interface with the environment to obtain the necessary external data?

Can the executive perform in a real-time environment with concurrency and time

constraints? These questions must be answered before a full-scale, production appli-

cation composition system can be developed.

4. Additional validating domains - We have demonstrated that an application composi-

tion system is feasible. However, application compositions need to be attempted in a

wider variety of real-world domains to further assess its strengths and shortcomings.

One domain to consider for such further evaluation is the simulation domain for the

Joint Modeling and Simulation System (J-MASS).

5. Alternatives to the OCU model - The complete OCU model as described in (24)

has not been implemented. Certain changes (for example, the omission of several

subsystem and object procedural interfaces) were made to the model to accommodate

the time limitation of this research effort and to conform with certain predetermined

requirements (e.g., that all objects would be created during the specification, not

dynamically at run-time). Other changes should also be considered. For example,

" the model does not currently allow a subsystem to directly query a subordinate

object concerning its state data; this would seem to be a desirable feature,

especially when dealing with if and while statement conditions.

"* there is currently no way to "hide" exports inside a subsystem (that is, to

prevent them from being used outside the subsystem; all exports are treated

alike and may be used for the source of any compatible import. Within the

validating domain, there were many instances where "intermediate" outputs

were produced and consumed within a single subsystem; there was never any

intention to use these "intermediate" results in any other subsystem. In fact,

using such "intermediate" results would likely produce an incorrect composition.

But, in keeping to the OCU model, all exports are globally accessable.

The OCU model must be carefully studied within the context of this application

composition system and its suitability further evaluated. Additional tests may dis-

7-5



cover that it is too restrictive (or permissive) to allow appropriate compositions for

all domains of interest.

7.4 Final Comments

The application composition system developed during this thesis effort is a signif-

icant first step in a software development revolution. Software engineers will no longer

develop systems to satisfy a single, unique requirement (complicated though it may be);

end users will create their own applications, without intervention by computer profession-

als. Long waits for inadequate, often unreliable and incorrect software products will be

only a distant memory. Software maintenance, once the major expense in any software

system's lifecycle, will be an issue no longer; application specifications, not source code,

will be maintained by the end users themselves. Software development teams will be

composed of domain engineers, software engineers, and application specialists; knowledge

about domains must be formalized, application composition and generation systems must

be developed/maintained, and problems within a domain must be analyzed, evaluated and

solved.

7-6



Appendix A. Requirements for Specifying Primitive Objects

Architect, which was implemented in this research effort, is predicated on the as-

sumption that all primitive objects are defined in a precise, standardized manner by the

software engineer. This appendix provides a template to be used by the software engineer

when creating a definition for all primitive object classes within any domain and explains

the significance of the mandatory items.

INPUT-DATA {(name, category, type-data, ,)... }

OUTPUT- DATA {(name, category, type-data, ,)... }

COEFFICIENTS {(name, value) ... }

UPDATE- FUNCTION function-name

Attributes, Current-State, Constants

variable 1

variable 2

variablen

Figure A.1. Standard Primitive Object Definition

A.1 Primitive Object Definition Template

Figure A.1 illustrates the standard template for all primitive object definitions. It is

based on the kinds of data available to primitive objects as described by the OCU model.

A-I



See Appendix E for examples of primitive object definitions from the logic circuit domain

used to validate this implementation.

A.1.1 INPUT-DATA INPUT-DATA describes the data which is external to the

object but is needed to update it. INPUT-DATA is implemented as a set of IMPORT-

OBJ objects; during preprocessing (BUILD-IMPORT-EXPORT-AREA), each entry in the

set becomes a part of the import area of the subsystem which "controls" that primitive

object.

"* IMPORT-NAME: identifies the name by which this piece of data will be referred. In

the object's update function, this name must appear in a GET-IMPORT function

call to obtain the data's actual value. Additionally, the name will be displayed

to the application specialist during preprocessing (BUILD-IMPORT-SOURCES) to

uniquely identify this input-data item when more than one piece of external data can

serve as its source.

"* IMPORT-CATEGORY: identifies the type of the external data required, in domain-

oriented terms. For example, one might specify that the data must be of the category

"temperature" or "time," rather than merely a real number or an integer. This is

analogous to the Ada programming language which encourages the use of subtypes

to further constrain the possible values which a given variable can accept. Only

EXPORT-OBJs with the same category can be considered as potential sources for

this input-data item.

"* IMPORT-TYPE-DATA: identifies the primitive data type of the required data. This

data type is used only for checking and evaluating the expressions in if and while

statements. The current implementation accommodates only primitive data types

(integer, real, boolean, string and symbol).

A.1.2 OUTPUT-DATA OUTPUT-DATA describes the data which the object must

make available externally to other application components. It is implemented as a set of

EXPORT-OBJ objects; during preprocessing (BUILD-IMPORT-EXPORT-AREA), each

A-2



entry in the set becomes a part of the export area of the subsystem which "controls" that

primitive object.

"* EXPORT-NAME: identifies the name by which this piece of data will be referred. In

the object's update function, this name must appear in a SET-EXPORT function call

to make the new value accessible to other application components. Additionally, the

name will be displayed to the application specialist during preprocessing (BUILD-

IMPORT-SOURCES) to uniquely identify this output-data as a possible source when

more than EXPORT-OBJ can serve as the source for an IMPORT-OBJ.

"* EXPORT-CATEGORY: identifies the type of the external data (OUTPUT-DATA)

produced, in domain-oriented terms. OUTPUT-DATA can be used only by those

import items which have the same category.

"* EXPORT-TYPE-DATA: identifies the primitive data type of the required data. This

data type is used only for checking and evaluating the expressions in if and while

statements. The current implementation accommodates only primitive data types

(integer, real, boolean, string and symbol).

A.1.3 COEFFICIENTS In the OCU model, coefficients represent data which can

be used in an object's update function to alter the behavior or performance of the object.

In this implementation, coefficients are expected to have a default value, determined by

the domain analysis, and can be modified, as necessary, at any point in the execution via

a setfunction statement in the subsystem's update procedure.

A coefficient is represented as a NAME-VALUE-OBJ: NAME-VALUE-NAME is the

name of the coefficient (to be used in the update function when referencing this coefficient)

and NAME-VALUE-VALUE is the current value associated with the coefficient. The

coefficient's value is not constrained by a particular data type; rather, it is implemented as

a REFINE ANY-TYPE which, as its name implies, allows any type of data to be stored.

This requires that the software engineer ensure compatibility of data types between default

coefficient values and their usage in object update functions. In addition, it imposes a

responsibility on the application specialist to provide compatible data when specifying

A-3



new values for coefficients in setfunction statements; no semantic checks can ensure data

consistency before behavior simulation. This may appear to unduly burden the application

specialist; however, this approach provides the flexibility needed to accommodate any

potential domain's requirements for number and type of coefficients.

A.1.4 UPDATE-FUNCTION This variable stores the name of the function cur-

rently used to update the primitive object. During behavior simulation, when an update

statement for a primitive object is encountered, Architect retrieves the name of the func-

tion to be used for updating from this variable and calls the indicated function to complete

the operation. It is expected that domain analysis will have identified a "normal" or de-

fault update function for each primitive object class. An alternate update function can

be specified at any time during behavior simulation via a setfunction statement in the

subsystem's update procedure; subsequent update statements applied to that object will

use this new update function.

A.1.5 Attributes, Current-State, Constants Although the OCU model considers

these to be different kinds of data, this implementation makes no such distinctions; all

are modeled as REFINE attributes of a primitive object. A strict interpretation of the

OCU model would allow only current-state data to be modified directly by a setstate

statement; the current implementation allows any of this data to be changed. If it becomes

necessary or desirable to do so, enforcing these distinctions could be accomplished via a

naming convention scheme; as an example, attributes (object characteristics) could be

represented with the letters "ATTR" imbedded within attribute names, "STATE" within

current-state names and "CONST" within the names of constants.

A.1.6 Miscellaneous

* All primitive object definitions must begin with an object class specification. This

implementation assumes that each primitive object c]ass name consists of the kind

of real-world object represented by the class followed by "-OBJ" (e.g. AND-GATE-

OBJ). This class name (minus the "-OBJ") appears in the domain-specific grammar

A-4



when specifying (i.e., creating) the object instances which are to be part of the

application.

"* All variable names associated with an object are prefaced by the complete object

class name. This ensures that variable names are unique - the software engineer

can use descriptive, domain-oriented names for all variables without being concerned

that some other class of primitive object might already have a variable with the

same name. It also allows the application specialist to refer to variables in setstate

statements by just this domain-oriented name; Architect can assemble the entire

variable name by prefacing the given name with the object class of the statement's

operand.

"* All update functions are included in the primitive object definition. Each update

function is coded as a REFINE function whose parameters include the subsystem

which controls the primitive object being updated and the primitive object itself.



Appendix B. Guide to Using the Application Composer

Maintaining a computer program, especially one written by a colleague who is no

longer available for consultation, can be a daunting task. This appendix attempts to ease

that burden somewhat by providing detailed, technical information needed to execute the

application composer. The intended users of this guide are the software engineers who will

be tasked to extend the capabilities of this composer. It is not written for the software

engineers who create and maintain domain-specific languages and technology bases; helpful

information of this nature can be found in Appendix B of (33).

B. 1 Getting Started

The application composer must execute within the Software Refinery environment

which must be accessed through an Emacs process. To enter the Software Refinery Envi-

ronment:

1. From a command or shell window, set the current directory to that which contains
Architect.

2. Invoke Emacs (emacs or emacs& to run in the background).

After the large Emacs window appears, start Software Refinery by pressing <esc> (which

causes the cursor to jump to the lower left corner of the Emacs window) and typing

run-refine. After a short initialize phase during which various messages will be displayed

on the right side of the Emacs window, Software Refinery will be ready for use.

The application composer's executable code modules (suffixed by .fasl must be

loaded before Architect can be executed; if no executable modules exist, they must be

created via a compile step. There are many dependencies among the many files which

comprise Architect. Therefore, to ensure all files are compiled and/or loaded in the proper

order, it is recommended that a "load" file (to load all executable modules) and a "compile-

and-load" file (to compile source code modules and load the newly created executable

modules) be used. The "compile- and-load" file for Architect is listed in Section B.3.

B-1



A "compile-and-load" file is actually a lisp function whose name follows defun (this

discussion also applies to "load" files). This function must be loaded into the Refine

object base before it can be executed. This is accomplished by typing (load "ci") at

the Refine prompt (. >), where cl corresponds to the name of the lisp function. After the

function is loaded, it can be executed by typing (cl). Execution of the function causes

each designated file to be compiled and loaded, in turn. Note: the DIALECT system must

be loaded first ((load-system "dialect" "I-0")).

B.2 Using the Application Composition System

Now that Architect is loaded, it is ready for use. If the user wants to employ the full

capabilities of the composition system, he should refer to the instructions in Appendix A

of (33).

However, if the user's focus is strictly the application composer itself (i.e., he is not

interested in using generic components, loading previously saved components/architectural

fragments, nor editing application definitions), the easiest and fastest method of populating

the structured object base is via parsing. This is accomplished using the left side of the

Emacs window. First, establish it as the "active" window by moving the cursor there

and clicking the right mouse button. Then type as desired using the Emacs editor. Or,

textual application definitions may be loaded from any file by typing <ctrl> x <ctrl> f,

and completing the file pathname that appears at the bottom of the window. When the

desired application definition appears in the left window, parse it into the Refine object

base as follows:

1. Move the cursor to the beginning of the definition and type <esc><space> to mark

the beginning of the parse block.

2. Move the cursor just beyond the end of the definition and type esc><space> to mark
the end of the block.

3. Move the cursor back to the top of the block and <esc> w to move the block into
the Emacs buffer.

4. Move the cursor to the right side of the Emacs window, establish it as the "active"
window, and type at the Refine prompt:

B-2



(\#> <ctrl>y <ctrl> )

Note: <ctrl> y causes the contents of the Emacs buffer to be "dumped" into a the
Refine parse command (#).

Upon successful completion of the parse command, the application definition is stored

as an abstract syntax tree (AST) in the Refine object base. The root of that AST is now

the "current node;" this is significant as Refine rules operate only on the current node.

In the present implementation, the user interacts with Architect by invoking applicable

rules. The list of currently applicable rules can be obtained by typing Urs) ("rule search").

After deciding what he wants Architect to do, the user applies the chosen rule by typing

(ar n) where n is the number of the appropriate rule. The user is prompted through any

interactions which result from applying that rule.

If the user is interested only in the preprocess, semantic-check, and execute system

components, a simplified the application composer can be used. The required models for

the simplified version are listed in their compilation order in Figure B.1. It should be noted

that the user never loses the ability to "edit," "load," and "store" application definitions,

even with this simplified system. Because all objects must have unique names, reparsing

a modified copy of the original application has the effect of "editing" the application. We

have already seen how application definitions can be "loaded" from a text file; application

definitions can be "saved" into a text file via the Emacs command, <ctrl> x <ctrl> s.

B.3 "Compile-And-Load" File for the Application Composition System

Including the following "compile-and-load" file into this user's guide accomplishes

two objectives:

1. It lists the files which are required to execute Architect within the logic circuit do-
main.

2. It establishes a compilation order to accommodate program dependencies.

\begin{singlespace}

(defun clO

B-3



dialect
lisp-read, lisp
dm-ocu
gram-ocu
set-debug
globals
imports-exports
eval-expr
execute

domain-specific
technology base

files

semantic-checks
gram-dsl

Figure B.1. Compilation Order for Simplified Application Composer System

B-4



(load-system "dialect" Ill-oi)

(compile-file "./OCU-dm/dm-ocu")

(load "../OCU-dm/dm-ocu")

(compile-file "./OCU-dm/gram-ocu")

(load ".IOCU-dm/gram-ocu"l)

(compile-file "./DSL/globals")

(load "./DSL/globals")

(compile-file "./DSL/lisp-utilities lisp")

(load "./DSL/lisp-utilities lisp")

(compile-file "./DSL/obj-utilities")

(load "./DSL/obj-utilities")

(compile-file ". /DSL/ read-ut ilities")

(load "./DSL/read-utilities")

(compile-file "./DSL/erase"l)

(load "./DSL/erase")

(compile-file "./DSL/menu")

(load "I./DSL/menu"l)

(compile-file "./DSL/display-files")

(load "./DSL/display-files")

(compile-file "./DSL/modify-obj")

B-.5



(load ". /DSL/modify-obj")

(compile-file "./DSL/save")

(load "./DSL/savell)

(compile-file "./DSL/generic")

(load SS./DSL/generic")

(compile-file ". /DSL/build-generic")

(load './DSL/build-generic')

(compile-file "./DSL/complete")

(load "./DSL/complete"l)

(compile-file './OCU/set-debug")

(load './OCU/set-debug")

(compile-file ". /OCU/imports-exports')

(load "./OCU/imports-expoz-ts")

(compile-file "./OCU/eval-expr")

(load "./OC/eval-exprol)

(compile-file "./OCU/execute")

(load "./OCU/executelf)

(compile-file "./OCU/semantic-checks"l)

(load "./OCU/semantic-checks")

(compile-file "./domain-model/and-gate"l)

B-6



(load "./domain-model/and-gate")

(compile-file "I./domain-model/or-gate")

(load "./domain-model/or-gate")

(compile-file ".Idomain-modellnand-gatel")

(load "./domain-model/nand-gatell)

(compile-file ". /domain-model/nor-gate")

(load ". /domain-model/nor-gate"l)

(compile-file "./domain-model/not-gate")

(load ". /domaiu-model/not-gatel")

(compile-file "./domain-model/svitch")

(load "./domain-model/uvitch")

(compile-file "./domain-model/jk-flip-flop')

(load "./domain-model/jk-flip-flop')

(compile-file "./domain-model/led")

(load I. /domain-model/led")

(compile-file ee./domain-model/counter")

(load './domain-model/counter")

(compile-file "./domain-model/decoder"l)

(load './domain-model/decoder")

(compile-file "'./domain-model/half -adder")

B-7



(load "./domain-model/half-adder")

(compile-file ". /domain-model/mux")

(load tII/domain-.model/muII)

(compile-file ' ./domain-model/gram-logic")

(load "./domain-model/gram-logic")

(in-grammar 'circuits)

kendfsinglespace}

B-8



Appendix C. Validation Test Cases and Results

This appendix presents a subset of the circuits from the logic circuit domain which

were constructed to demonstrate the utility of Architect, the application generator imple-

mented during this research. Each test case is presented in the following consistent format:

the objective to be achieved, an illustration of the circuit/application to be tested, the ap-

plication specification written in the domain-specific language and system/user dialogues

during the test. Please note: the system/user dialogues have been editted. During actual

execution of Architect, the complete list of possible import sources is presented to the ap-

plication specialist each time one is requested; I have retained only the first such display,

deleting the repetitive ones to conserve paper.

C-I



C.1 Decoder Test

This test case consists of two independent 3-to-8 line decoders: one constructed from

very low-level logic gates (AND, NOT), the other from the domain's decoder primitive

object. Each decoder was provided the same input values to demonstrate the equivalence

of the two circuits. It also includes a second execution of the same application with

different input values. This illustrates two points: 1) the application works correctly with

a different set of values and 2) a different user interface is used when import-to-export

connections already exist. An additional point should be noted: the primitive decoder

is much easier to use than the one constructed from low-level logic gates. This should

be a fundamental lesson for the domain engineer: if a particular subsystem will be used

repeatedly by application specialists working within the domain, it may be advisable to

encapsulate that subsystem into a "high-level primitive" to simplify subsequent application

specifications.

C.1.1 Circuit Diagram See Figure C.1 for a decoder implemented as a subsystem

composed from low-level logic gates. Figure C.2 illustrates a decoder primitive. Both have

been included in the specification for this test case.

C.1.2 Application Specification - Test 1

application definition test-decoders-primitive-and-subsystem

switch sub-z position: on
switch sub-y position: on
switch sub-x position: on
switch z position: on
switch y position: on
switch X position: on

not-gate not-sub-z
not-gate not-sub-y
not-gate not-sub-x

and-gate andOl
and-gate and02
and-gate andil
and-gate and12
and-gate and2l
and-gate and22

C-2



AND7 AN72 SB-M

F i g u re.... F1 
...... L i e.eo d r.Sb s s t m

NOT-SC-3



YDECODEI

Figure C.2. 3-to-8 Line Decoder (Primitive)

and-gate and3l
and-gate and32
an4-gate and4l
and-gate and42
and-gat4 andSl
and-gate and52
and-gate and6l
and-gate and62
and-gate and7l
and-gate and72

led sub-mO
led sub-mi
led sub-S2
led sub-m3
led sub-m4
led sub-m5
led sub-m6
led sub-m7

led mO
led ml
led m2
led m3
led m4
led .5
led m6
led z7

decoder DECODE1

application decoder-tests is

C-4



controls: decoder-subsystem,
decoder-primitive

update procedure:
update decoder-subsystem
update decoder-primitive

subsystem decoder-subsystem is
controls: sub-z, sub-y, sub-x, not-sub-z, not-sub-y, not-sub-x,

and0l, and02, andli, and12, and2i, and22, and3l, and32,
and41, and42, and51, and52, and6i, and62, and7i, and72,
sub-mO, sub-mi, sub-m2, sub-m3, sub-m4, sub-mS, sub-m6,
sub-m7

update procedure:
update sub-z
update sub-y
update sub-x
update not-sub-z
update not-sub-y
update not-sub-x
update andOl
update and02
update andli
update and12
update and21
update and22
update and3i
update and32
update and41

update and42
update andSi
update and52
update and6i
update and62
update and7i
update and72
update sub-mO
update sub-mi
update sub-m2
update sub-m3
update sub-m4
update sub-mS
update sub-m6
update sub-m7

subsystem decoder-primitive is
controls: x, y, z, DECODEl, mO, ml, m2, m3, m4, mS, m6, m7
update procedure:

update z
update y
update x
update DECODEI

C-5



update mO
update ml
update m2
update m3
update m4
update mS
update m6
update m7

C.1.3 System/User Dialogue - Test 1

.> (#> application definition test-decoders-primitive-and-subsystem)
application definition

TEST-DECODERS-PRIMITIVE-AND-SUBSYSTEM
SUB-Z SUB-Y SUB-X Z Y X NOT-SUB-Z NOT-SUB-Y NOT-SUB-X AID01

AND02 ANDII AND12 AND21 AND22 AND31 AND32 AND41 AND42 ANDS1
ANDS2 AND61 AND62 AND71 AND72 SUB-MO SUB-MI SUB-M2 SUB-M3
SUB-M4 SUB-MS SUB-M6 SUB-M7 MO M1 M2 M3 M4 M5 M6 M7 DECODE1
DECODER-TESTS DECODER-SUBSYSTEM DECODER-PRIMITIVE

.> Urs)
- Rules for: application definition

TEST-DECODERS-PRIMITIVE-AND-SUBSYSTEM
SUB-Z SUB-Y SUB-X Z Y X NOT-SUB-Z NOT-SUB-Y NOT-SUB-X ANDOl

AND02 ANDI1 AND12 AND21 AND22 AND31 AND32 AND41 AND42 AND51
ANDS2 AND61 AND62 AND71 AND72 SUB-MO SUB-Mi SUB-M2 SUB-M3
SUB-M4 SUB-MS SUB-M6 SUB-M7 MO M1 M2 M3 M4 M5 M6 M7 DECODE1
DECODER-TESTS DECODER-SUBSYSTEM DECODER-PRIMITIVE -

2) CHECK-SEMANTICS
.> (ar 2)

More than one export can provide the data for INI
which is used by object SUB-M7

in subsystem DECODER-SUBSYSTEM
Choose the export item (subsystem and component)

that you wish to be the source of this data:
1> subsystem "DECODER-SUBSYSTEM" component "SUB-Z" name "OUTI"
2> subsystem "DECODER-SUBSYSTEM" component "SUB-Y" name "OUTi"
3> subsystem "DECODER-SUBSYSTEM" component "SUB-X" name "OUTI"
4> subsystem "DECODER-SUBSYSTEM" component "NOT-SUB-Z" name "OUTI"
5> subsystem "DECODER-SUBSYSTEM" component "NOT-SUB-Y" name "OUTI"
6> subsystem "DECODER-SUBSYSTEM" component "NOT-SUB-X" name "OUTI"
7> subsystem "DECODER-SUBSYSTEM" component "AND01" name "OUT1"
8> subsystem "DECODER-SUBSYSTEM" component "AND02" name "OUTi"
9> subsystem "DECODER-SUBSYSTEM" component "AND1I" name "OUTI"
10> subsystem "DECODER-SUBSYSTEM" component "AND12" name "OUTi"
11> subsystem "DECODER-SUBSYSTEM" component "AND21" name "OUTI"

12> subsystem "DECODER-SUBSYSTEM" component "AND22" name "OUTi"
13> subsystem "DECODER-SUBSYSTEM" component "AND31" name "OUT1"
14> subsystem "DECODER-SUBSYSTEM" component "AND32" name "OUTi"
16> subsystem "DECODER-SUBSYSTEM" component "AND41" name "OUTI"
16> subsystem "DECODER-SUBSYSTEM" component "AND42" name "OUTi"

C-6



17> subsystem "DECODER-SUBSYSTEM" component "AID51" name "OUT1"
18> subsystem "DECODER-SUBSYSTEM" component "ANDS2" name "OUTi"
19> subsystem "DECODER-SUBSYSTEM" component "AND61" name "OUTi"
20> subsystem "DECODER-SUBSYSTEM" component "AND62" name "OUT1"
21> subsystem "DECODER-SUBSYSTEM" component "AND71" name "OUTi"

22> subsystem "DECODER-SUBSYSTEM" component "AND72" name "OUTI"
23> subsystem "DECODER-PRIMITIVE" component "X" name "OUTI"
24> subsystem "DECODER-PRIMITIVE" component "Y" name "OUTI"
25> subsystem "DECODER-PRIMITIVE" component "Z" name "OUTi"
26> subsystem "DECODER-PRIMITIVE" component "DECODEl" name "MO"
27> subsystem "DECODER-PRIMITIVE" component "DECODEl" name "M1"
28> subsystem "DECODER-PRIMITIVE" component "DECODEl" name "M2"
29> subsystem "DECODER-PRIMITIVE" component "DECODEl" name "M3"
30> subsystem "DECODER-PRIMITIVE" component "DECODEI" name "M4"
31> subsystem "DECODER-PRIMITIVE" component "DECODEI" name "MS"
32> subsystem "DECODER-PRIMITIVE" component "DECODEI" name "M6"
33> subsystem "DECODER-PRIMITIVE" component "DECODEl" name "M7"
34> Specific source not required; use arbitrary one

Enter the number corresponding to the source you want to use
22

More than one export can provide the data for IN1
which is used by object SUB-M6

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
20

More than one export can provide the data for INI
which is used by object SUB-MS

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
18

More than one export can provide the data for INI
which is used by object SUB-M4

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for INI
which is used by object SUB-M3

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
14

More than one export can provide the data for Ill
which is used by object SUB-M2

in subsystem DECODER-SUBSYSTEM

Enter the number corresponding to the source you want to use
12

C-7



More than one export can provide the data for INI
which is used by object SUB-Mi

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
10

More than one export can provide the data for IN1
which is used by object SUB-MO

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
8

More than one export can provide the data for IN2
which is used by object AND72

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for IN1
which is used by object AND72

in subsystem DECODER-SUBSYSTEM
Enter the uumber corresponding to the source you want to use
21

More than one export can provide the data for IN2
which is used by object AND71

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for INI
which is used by object AND71

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
1

More than one export can provide the data for I12
which is used by object AND62

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for INI
which is used by object AND62

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
19

More than one export can provide the data for I2
which is used by object AND61

in subsystem DECODER-SUBSYSTEM

C-8



Enter the number corresponding to the source you want to use
2

More than one export can provide the data for IN1
which is used by object AND61

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
4

More than one export can provide the data for IN2
which is used by object AND52

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for IN1
which is used by object ANDS2

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
17

More than one export can provide the data for 112
which is used by object AND51

in subsystem DECODER-SUBSYSTEM

Enter the number corresponding to the source you want to use
5

More than one export can provide the data for INI
which is used by object ANDS1

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
1

More than one export can provide the data for 112
which is used by object AND42

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for INl
which is used by object AND42

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
15

More than one export can provide the data for IN2
which is used by object AID41

in subsystem DECODER-SUBSYSTEM

Enter the number corresponding to the source you want to use
S

C-9



More than one export can provide the data for INI
which is used by object AND41

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
4

More than one export can provide the data for IN2
which is used by object AND32

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for Ill
which is used by object AND32

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
13

More than one export can provide the data for IN2
which is used by object AND31

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for IN1
which is used by object AND31

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
1

More than one export can provide the data for 112
which is used by object AND22

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for INl
which is used by object AND12

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
11

More than one export can provide the data for IN2
which is used by object AID21

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for INl
which is used by object AID21

in subsystem DECODER-SUBSYSTEM

C-lO



Enter the number corresponding to the source you want to use
4

More than one export can provide the data for 112
which is used by object AND12

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for INI
which is used by object AID12

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
9

More than one export can provide the data for IN2
which is used by object ANDlI

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for Ill
which is used by object AIDIl

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
I

More than one export can provide the data for IN2
which is used by object AND02

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for INI
which is used by object AID02

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
7

More than one export can provide the data for IN2
which is used by object AIDOl

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for INI
which is used by object AND01

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
4

C-11



More than one export can provide the data for Il1
which is used by object NOT-SUB-X

in subsystem DECODER-SUBSYSTEM

Enter the number corresponding to the source you want to use
3

More than one export can provide the data for Ill
which is used by object NOT-SUB-Y

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for Il1
which is used by object NOT-SUB-Z

in subsystem DECODER-SUBSYSTEM
Enter the number corresponding to the source you want to use
1

More than one export can provide the data for Ill
which is used by object M7

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
33

More than one export can provide the data for Ill
which is used by object M6

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
32

More than one export can provide the data for Ill
which is used by object MS

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
31

More than one export can provide the data for Ili
which is used by object M4

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use

30

More than one export can provide the data for Ill
which is used by object M3

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
29

More than one export can provide the data for Ill
which is used by object M2

in subsystem DECODER-PRIMITIVE

C-12



Enter the number corresponding to the source you want to use
28

More than one export can provide the data for III
which is used by object MI

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
27

More than one export can provide the data for III
which is used by object NO

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
26

More than one export can provide the data for 113
which is used by object DECODEI

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
25

More than one export can provide the data for I12
which is used by object DECODE1

in subsystm DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
24

More than one export can provide the data for IIl
which is used by object DECODEI

in subsystem DECODER-PRIMITIVE
Enter the number corresponding to the source you want to use
23
Rule successfully applied.
application definition

TEST-DECODERS-PRIMITIVE-AND-SUBSYSTEM
SUB-Z SUB-Y SUB-X Z Y X IOT-SUB-Z NOT-SUB-Y lOT-SUB-X AIDO1

AND02 AND1l AND12 AND21 A1D22 AND31 AND32 A1D41 AID42 ANDS1
AID52 ANDl6 A1D62 AND71 AND72 SUB-MO SUB-MI SUB-M2 SUB-M3
SUB-M4 SUB-MS SUB-M6 SUB-M7 MO M1 M2 M3 M4 MS M6 M7 DECODE1
DECODER-TESTS DECODER-SUBSYSTEM DECODER-PRIMITIVE

C-G I.



C.2 Full Adder Test

This case tests a full adder. It is constructed of two half adders: one is a subsystem

composed of low-level primitives, the other is the domain's "higher level primitive." This

test demonstrates the interchangeability of subsystem versus "higher level primitives" in

application specifications.

C.2.1 Circuit Diagram See Figure C.3.

Figure C.3. Full Adder

C.2F.2 Application Speification

application definition test-full-adder

switch x position: on
switch y position: on

switch carry-in position: off

not-gate not-i
not-gat*e not-y

and-gate andl
and-gate and2
and-gate and3

or-gate orl
or-gate or2

C-14



led s
led c

half-adder HA2

application full-adder-test is
controls: full-adder
update procedure:

update full-adder

subsystem full-adder is
controls: half-adder-subsystem, HA2, or2, carry-in, s, c
update procedure:

update carry-in
update half-adder-subsystem
update HA2
update or2
update s
update c

subsystem half-adder-subsystem is
controls: x, y, not-x, not-y, andi, and2, and3, onl

update procedure:
update x
update not-x
update y
update not-y
update andl
update and2
update orl
update and3

C.2.3 System/User Dialogue

.> (#> application definition test-full-adder)
application definition TEST-FULL-ADDER

X Y CARRY-IN NOT-X NOT-Y ANDI AND2 AND3 ORi OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM

.> Crs)
- Rules for: application definition TEST-FULL-ADDER

X Y CARRY-IN IOT-X NOT-Y AIDI AID2 AID3 ORI OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM -

2) CHECK-SEMANTICS
.> Car 2)

More than one export can provide the data for Ill
which is used by object C

c-i.5



in subsystem FULL-ADDER
Choose the export item (subsystem and component)

that you wish to be the source of this data:
1> subsystem "FULL-ADDER" component "HA2" name "S"

2> subsystem "FULL-ADDER" component "HA2" name "C"

3> subsystem "FULL-ADDER" component "OR2" name "OUT1"
4> subsystem "FULL-ADDER" component "CARRY-IN" name "OUT1"
5> subsystem "HALF-ADDER-SUBSYSTEM" component "X" name "OUTI"
6> subsystem "HALF-ADDER-SUBSYSTEM" component "Y" name "OUTI"
7> subsystem "HALF-ADDER-SUBSYSTEM" component "NOT-X" name "OUTi"
8> subsystem "HALF-ADDER-SUBSYSTEM" component "NOT-Y" name "OUT1"
9> subsystem "HkLF-ADDER-SUBSYSTEM" component "ANDi" name "OUT1"
10> subsystem "HALF-ADDER-SUBSYSTEM" component "AND2" name "OUT1"
11> subsystem "HALF-ADDER-SUBSYSTEM" component "AND3" name "OUT1"
12> subsystem "HALF-ADDER-SUBSYSTEM" component "ORi" name "OUTI"
13> Specific source not required; use arbitrary one

Enter the number corresponding to the source you want to use
3

More than one export can provide the data for IN1
which is used by object S

in subsystem FULL-ADDER

Enter the number corresponding to the source you want to use
1

More than one export can provide the data for IN2
which is used by object OR2

in subsystem FULL-ADDER

11

More than one export can provide the data for IN1
which is used by object OR2

in subsystem FULL-ADDER
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for IN2
which is used by object HA2

in subsystem FULL-ADDER

Enter the number corresponding to the source you want to use
4

More than one export can provide the data for IN1
which is used by object HA2

in subsystem FULL-ADDER

Enter the number corresponding to the source you want to use
12

More than one export can provide the data for IN2
which is used by object OR1

in subsystem HALF-ADDER-SUBSYSTEM

C-16



Enter the number corresponding to the source you want to use
10

More than one export can provide the data for IlI
which is used by object OR1

in subsystem HALF-ADDER-SUBSYSTEM
Enter the number corresponding to the source you want to use
9

More than one export can provide the data for IN2
which is used by object AND3

in subsystem HALF-ADDER-SUBSYSTEM
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for IlI
which is used by object AND3

in subsystem HALF-ADDER-SUBSYSTEM
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for IN2
which is used by object AND2

in subsystem HALF-ADDER-SUBSYSTEM

Enter the number corresponding to the source you want to use
6

More than one export can provide the data for INI
which is used by object AND2

in subsystem HALF-ADDER-SUBSYSTEM
Enter the number corresponding to the source you want to use
7

More than one export can provide the data for IN2
which is used by object ANDI

in subsystem HALF-ADDER-SUBSYSTEM
Enter the number corresponding to the source you want to use
8

More than one export can provide the data for IIl
which is used by object AIDI

in subsystem HALF-ADDER-SUBSYSTEM

Enter the number corresponding to the source you want to use
5

More than one export can provide the data for III
which is used by object IOT-Y

in subsystem HALF-ADDER-SUBSYSTEM
Enter the number corresponding to the source you want to use
6

C-17



More than one export can provide the data for IN1
which is used by object NOT-X

in subsystem HALF-ADDER-SUBSYSTEM
Enter the number corresponding to the source you want to use
5
Rule successfully applied.
application definition TEST-FULL-ADDER

X Y CARRY-IN NOT-X NCT-Y ANDI AND2 AND3 ORi OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM

.> (rs)
- Rules for: application definition TEST-FULL-ADDER

X Y CARRY-IN NOT-X NOT-Y ANDI AND2 AND3 ORI 0R2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM -

1) DO-EXECUTE

2) CHECK-SEMANTICS
.> (ar 1)

LED S = OFF
LED C = ON
Rule successfully applied.
application definition TEST-FULL-ADDER

X Y CARRY-IN NOT-X NOT-Y ANDI AND2 AND3 OR1 OR2 S C HA2
FULL-ADDER-TEST FULL-ADDER HALF-ADDER-SUBSYSTEM

C-18



C.3 BCD Adder

This test case constructs a circuit which can be used to add two one-digit decimal

numbers. Note that one-digit decimal number can range from 0 - 9; therefore four binary

bits are needed for its computer representation which is called Binary Coded Decimal or

BCD. Table C.1 provides a comparison between BCD and binary number representations

(27:250). It can be used to verify the results of the constructed circuit.

Table C.1. BCD/Binary Comparison

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9
S0 1 1 0 0 0 0 0
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19

C.3.1 Circuit Diagram See Figure C.4 ,(27:252).

C.3.2 Application Specification

application definition test-BCD-adder

switch aO position: on
switch al position: off
switch a2 position: off
switch a3 position: on

C-19



FigureC.4. BD.Adde

switc bO ositin: o
switch bi pOsiio:"f

hafade HAHm, CCMIulI

hFifadde CA.BC Ade

half-addero postin:of

half-adder HAM2
half-adder HA123

half-adder HAM3
half-adder HAM4

half-adder HA142

har-atder or 211

orl-gadder cr1241

C-20



or-gate or211
or-gate or221
or-gate or231
or-gate or241

or-gate orl
or-gate or2

and-gate andi
and-gate and2

led sl
led s2
led s4
led s8
led carry-out

application BCD-adder-test is
controls: BCD-adder
update procedure:

update BCD-adder

subsystem BCD-adder is
controls: four-bit-adderi, four-bit-adder2,

andi, and2, orl, or2,
aO, al, a2, a3, bO, bl. b2, b3, carry-in, zero,
si, s2, s4, s8, carry-out

update procedure:
update aO
update al
update a2
update a3
update bO
update bi
update b2
update b3
update carry-in
update four-bit-adderl
update andl
update and2
update orl
update or2
update zero
update four-bit-adder2
update sl
update s2
update s4
update s8
update carry-out

C-21



subsystem four-bit-adderl is
controls: full-adderlil, full-adderi21, full-adder131, full-adder14l
update procedure:

update full-adder 111
update full-adder121
update full-adder13i
update full-adder141

subsystem full-adderill is
controls: HAMl, HAM12, oi11l

update procedure:
update HAMl
update HA112
update or1il

subsystem full-adder121 is
controls: HA121, HA122, or121
update procedure:

update RA121
update HA122
update or121

subsystem full-adder131 is
controls: HA131, HA132, or131

update procedure:
update 0A131
update HA132
update or131

subsystem full-adder141 is
controls: HA141, HA142, or141
update procedure:

update HA141
update HA142

update or14I

subsystem four-bit-adder2 is
controls: full-adder21l, full-adder221, full-adder231, full-adder241
update procedure:

update full-adder211
update full-adder221
update full-adder231
update full-adder241

subsystem full-adder211 is
controls: HA211, HA212, or211
update procedure:

update HA211
update HA212

C-22



update or211

subsystem full-adder221 is
controls: HA221, EA222, or221
update procedure:

update HA221
update HA222
update or221

subsystem full-adder231 is
controls: BA231, EA232, or231
update procedure:

update HA231
update KA232
update or231

subsystem full-adder241 is
controls: HA241, HA242, or241
update procedure:

update HA241
update HA242
update or241

C.3.3 System/User Dialogue

.> (#> application definition test-BCD-adder)
application definition TEST-BCD-ADDER

AO Al A2 A3 BO BI B2 B3 CARRY-IN ZERO HAllI HAl12 HA121
RA122 WA131 HA132 NA141 RA142 HA211 RA212 NA221 HA222 HA231
HA232 HA241 HA242 ORIll 0R121 OR131 0R141 0R211 0R221 0R231
0R241 ORI OR2 ANDI AND2 S1 S2 S4 58 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDERI FULL-ADDER111
FULL-ADDER121 FULL-ADDERl31 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241

.> (rs)
- Rules for: application definition TEST-BCD-ADDER

AO Al A2 A3 BO B1 B2 B3 CARRY-IN ZERO RAll! BA112 BA121
HA122 BA131 HA132 HA141 HA142 HA211 BA212 HA221 HA222 HA231
HA232 HA241 HA242 0R11i 0R121 0R131 0R141 0R211 0R221 0R231
0R241 OR1 OR2 AEDI AED2 S1 S2 S4 S8 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDERI FULL-ADDERi11
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241 -

2) CHECK-SEMANTICS
.> (ar 2)

More than one export can provide the data for IIl
which is used by object CARRY-OUT

in subsystem BCD-ADDER

C-23



Choose the export item (subsystem and component)
that you wish to be the source of this data:

1> subsystem "BCD-ADDER" component "AI1DI" name "OUT1"
2> subsystem "DCD-ADDER" component "AID2" name "OUTi"
3> subsystem "BCD-ADDER" component "OR1" name "OUTI"
4> subsystem "BCD-ADDER" component "OR2" name "OUTi"
5> subsystem "BCD-ADDER" component "AO" name "OUTi"
6> subsystem "BCD-ADDER" component "AIl" name "OUTi"

7> subsystem "BCD-ADDER" component "A2" name "OUTI"
8> subsystem "BCD-ADDER" component "A3V name "OUTI"
9> subsystem "BCD-ADDER" component "BO" name "OUT1"
10> subsystem "BCD-ADDER" component "Bl" name "OUTi"
11> subsystem "BCD-ADDER" component "B2" name "OUTi"
12> subsystem "BCD-ADDER" component "B3" name "OUT1"
13> subsystem "BCD-ADDER" component "CARRY-Il" name "OUTi"
14> subsystem "BCD-ADDER" component "ZERO" name "OUTI"
15> subsystem "FULL-ADDERlIl" component "HA111" name "S"
16> subsystem "FULL-ADDER111" component "HAuli" name "C"
17> subsystem "FULL-ADDERllI" component "HA112" name "'S"
18> subsystem "FULL-ADDER111" component "HA112" name "C"
19> subsystem "FULL-ADDER111" component "CR111" name "OUT1"
20> subsystem "FULL-ADDER121" component "HA121" name "S"

21> subsystem "FULL-ADDER121" component "HA121" name "C"
22> subsystem "FULL-ADDER121" component "HA122" name "S"
23> subsystem "FULL-ADDER121" component "HA122" name "C"
24> subsystem "FULL-aDDER121" component "CR121" name "OUT1"

25> subsystem "FULL-ADDER131" component "BA131" name "S"
26> subsystem "FULL-ADDER131" component "HA131" name "C"
27> subsystem "FULL-LDDER131" component "IM132" name "S"
28> subsystem "FULL-ADDER131" component "HA132" name "C"

29> subsystem "FULL-ADDER131" component "CR131" name "OUT1"
30> subsystem "FULL-ADDER141" component "BA141" name "S"
31> subsystem "FULL-ADDER141" component "11141" name "C"
32> subsystem "FULL-ADDER141" component "1A142" name "S"

33> subsystem "FULL-ADDER141" component "HA142" name "C"
34> subsystem "FULL-ADDER141" component "CR141" name "OUTI"
35> subsystem "FULL-ADDER211" component "HA211" name "S"
36> subsystem "FULL-ADDER211" component "HA211" name "C"
37> subsystem "FULL-LDDER211" component "HA212" name "S"
38> subsystem "FULL-ADDER211" component "1H212" name "C"
39> subsystem "FULL-ADDER211" component "CR211" name "OUTi"
40> subsystem "FULL-ADDER221" component "HA221" name "S"
41> subsystem "FULL-ADDER221" component "HA221" name "C"
42> subsystem "FULL-ADDER221" component "HA222" name "S"
43> subsystem "FULL-ADDER221" component "HA222" name "C"
44> subsystem "FULL-ADDER221" component "CR221" name "OUTi"
45> subsystem "FULL-ADDER231" component "11231" name "S"
46> subsystem "FULL-ADDER231" component "HA231" name "C"
47> subsystem "FULL-ADDER231" component "HA232" name "S"
48> subsystem "FULL-ADDER231" component "HA232" name "C"
49> subsystem "FULL-ADDER231" component "CR231" name "OUTi"

C-24



50> subsystem "FULL-ADDER241" component "HA241" name "S"
51> subsystem "FULL-ADDER241" component "HA241" name "C"
52> subsystem "FULL-ADDER241" component "KA242" name "S"

53> subsystem "FULL-ADDER241" component "HA242" name "C"
54> subsystem "FULL-ADDER241" component "0R241" name "OUTI"

55> Specific source not required; use arbitrary one
Enter the number corresponding to the source you want to use
4

More than one export can provide the data for Ill
which is used by object S8

in subsystem BCD-ADDER
Enter the number corresponding to the source you want to use
52

More than one export can provide the data for Ill
which is used by object S4

in subsystem BCD-ADDER
Enter the number corresponding to the source you want to use
47

More than one export can provide the data for Ill
which is used by object S2

in subsystem BCD-ADDER

Enter the number corresponding to the source you want to use
42

More than one export can provide the data for Ill
which is used by object Si

in subsystem BCD-ADDER

Enter the number corresponding to the source you want to use
37

More than one export can provide the data for 112
which is used by object OR2

in subsystem BCD-IDDER
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for Ill
which is used by object OR2

in subsystem BCD-ADDER
Enter the number corresponding to the source you want to use
34

More than one export can provide the data for 112
which is used by object ORI

in subsystem BCD-ADDER
Enter the number corresponding to the source you want to use
2

C-25



More than one export can provide the data for III
which is used by object ORI

in subsystem BCD-kDDER

Enter the number corresponding to the source you want to use
I

More than one export can provide the data for 112
which is used by object AND2

in subsystem BCD-ADDER
Enter the number corresponding to the source you want to use
22

More than one export can provide the data for III
which is used by object AND2

in subsystem BCD-ADDER
Enter the number corresponding to the source you want to use
32

More than one export can provide the data for 112
which is used by object AIDI

in subsystem BCD-ADDER
Enter the number corresponding to the source you want to use
27

More than one export can provide the data for III
which is used by object AND1

in subsystem BCD-kDDER

Enter the number corresponding to the source you want to use
32

More than one export can provide the data for I12
which is used by object ORill

in subsystem FULL-ADDERill
Enter the number corresponding to the source you want to use
18

More than one export can provide the data for III
which is used by object ORlil

in subsystem FULL-ADDERill
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for I12
which is used by object 1A112

in subsystem FULL-ADDERlIl

Enter the number corresponding to the source you want to use
13

More than one export can provide the data for IlI
which is used by object HA112

in subsystem FULL-ADDERIll

C-26



Enter the number corresponding to the source you want to use
1i

More than one export can provide the data for 112
which is used by object HAIIl

in subsystem FULL-ADDERlI

Enter the number corresponding to the source you want to use
9

More than one export can provide the data for Ill
which is used by object HAIlI

in subsystem FULL-ADDERlII

Enter the number corresponding to the source you want to use
5

More than one export can provide the data for IN2
which is used by object OR121

in subsystem FULL-ADDER121

Enter the number corresponding to the source you want to use
23

More than one export can provide the data for Ill
which is used by object OR121

in subsystem FULL-ADDER121

Enter the number corresponding to the source you want to use
21

More than one export can provide the data for IN2
which is used by object HA122

in subsystem FULL-ADDER121

Enter the number corresponding to the source you want to use
19

More than one export can provide the data for III
which is used by object BA122

in subsystem FULL-kDDER121

Enter the number corresponding to the source you want to use
20

More than one export can provide the data for IN2
which is used by object HA121

in subsystem FULL-ADDER121
Enter the number corresponding to the source you want to use
10

More than one export can provide the data for IIl
which is used by object RA121

in subsystem FULL-ADDER121

Enter the number corresponding to the source you want to use
6

C-27



More than one export can provide the data for IN2
which is used by object DR131

in subsystem FULL-ADDER131
Enter the number corresponding to the source you want to use
28

More than one export can provide the data for Ill
which is used by object 0R131

in subsystem FULL-ADDER131
Enter the number corresponding to the source you want to use
26

More than one export can provide the data for I12
which is used by object HA132

in subsystem FULL-ADDER131
Enter the number corresponding to the source you want to use
24

More than one export can provide the data for Ill
which is used by object HA132

in subsystem FULL-ADDER131

Enter the number corresponding to the source you want to use
25

More than one export can provide the data for 112
which is used by object NA131

in subsystem FULL-ADDERi31

Enter the number corresponding to the source you want to use
11

More than one export can provide the data for Ill
which is used by object HA131

in subsystem FULL-ADDER131
Enter the number corresponding to the source you want to use
7

More than one export can provide the data for 112
which is used by object MR141

in subsystem FULL-ADDER141
Enter the number corresponding to the source you want to use
33

More than one export can provide the data for Ill
which is used by object 0R141

in subsystem FULL-ADDER141
Enter the number corresponding to the source you want to use
31

More than one export can provide the data for I12
which is used by object HA142

in subsystem FULL-ADDER141

C-28



Enter the number corresponding to the source you want to use
29

More than one export can provide the data for Ill
which is used by object HA142

in subsystem FULL-ADDER141
Enter the number corresponding to the source you want to use
30

Hore than one export can provide the data for I12
which is used by object HA141

in subsystem FULL-ADDER141

Enter the number corresponding to the source you want to use
12

Hore than one export can provide the data for III
which is used by object BA141

in subsystem FULL-ADDER141
Enter the number corresponding to the source you want to use
8

Hore than one export can provide the data for I12
which is used by object 0R211

in subsystem FULL-ADDER2I1
Enter the number corresponding to the source you want to use
38

Hore than one export can provide the data for III

which is used by object 0R211
in subsystem FULL-ADDER211

Enter the number corresponding to the source you want to use
36

lore than one export can provide the data for IN2
which is used by object HA212

in subsystem FULL-ADDER211
Enter the number corresponding to the source you want to use
14

Hore than one export can provide the data for III
which is used by object HA212

in subsystem FULL-ADDER211
Enter the number corresponding to the source you want to use
35

Hore than one export can provide the data for I12

which is used by object HA211
in subsystem FULL-ADDER211

Enter the number corresponding to the source you want to use

14

C-29



More than one export can provide the data for IN1
which is used by object HA211

in subsystem FULL-ADDER211
Enter the number corresponding to the source you want to use
17

More than one export can provide the data for IN2
which is used by object 0R221

in subsystem FULL-ADDER221
Enter the number corresponding to the source you want to use
43

More than one export can provide the data for INl
which is used by object 0R221

in subsystem FULL-ADDER221
Enter the number corresponding to the source you want to use
41

More than one export can provide the data for IN2
which is used by object HA222

in subsystem FULL-ADDER221
Enter the number corresponding to the source you want to use
39

More than one export can provide the data for INl
which is used by object BA222

in subsystem FULL-ADDER221
Enter the number corresponding to the source you want to use
40

More than one export can provide the data for 112
which is used by object 91221

in subsystem FULL-ADDER221
Enter the number corresponding to the source you want to use
4

More than one export can provide the data for IN1
which is used by object HA221

in subsystem FULL-ADDER221
Enter the number corresponding to the source you want to use
22

More than one export can provide the data for 112
which is used by object 0R231

in subsystem FULL-ADDER231

Enter the number corresponding to the source you want to use
48

More than one export can provide the data for Ill
which is used by object 0R231

in subsystem FULL-ADDER231

C-30



Enter the number corresponding to the source you want to use
46

More than one export can provide the data for IN2
which is used by object HA232

in subsystem FULL-ADDER231
Enter the number corresponding to the source you want to use
44

More than one export can provide the data for III
which is used by object HA232

in subsystem FULL-ADDER231
Enter the number corresponding to the source you want to use
45

More than one export can provide the data for IN2
which is used by object HA231

in subsystem FULL-ADDER231
Enter the number corresponding to the source you want to use
4

More than one export can provide the data for III
which is used by object HA231

in subsystem FULL-ADDER231
Enter the number corresponding to the source you want to use
27

More than one export can provide the data for I12
which is used by object 0R241

in subsystem FULL-ADDER241
Enter the number corresponding to the source you want to use
53

More than one export can provide the data for IlI
which is used by object 0R241

in subsystem FULL-ADDER241
Enter the number corresponding to the source you want to use
51

More than one export can provide the data for IN2
which is used by object HA242

in subsystem FULL-ADDER241
Enter the number corresponding to the source you want to use
49

More than one export can provide the data for III
which is used by object HA242

in subsystem FULL-ADDER241
Enter the number corresponding to the source you want to use
50

C-31



More than one export can provide the data for IN2
which is used by object HA241

in subsystem FULL-ADDER241
Enter the number corresponding to the source you want to use
14

More than one export can provide the data for INI
which is used by object HA241

in subsystem FULL-kDDER241
Enter the number corresponding to the source you want to use
32
Rule successfully applied.
application definition TEST-BCD-ADDER

AO Al A2 A3 BO BI B2 B3 CARRY-IN ZERO HAlil HAl12 HA121
HA122 BA131 BA132 DA141 1A142 NA211 1A212 1A221 HA222 BA231
HA232 HA241 HA242 0R111 0R121 0R131 0R141 0R211 0R221 0R231
0R241 OR1 OR2 ANDl AND2 S1 S2 S4 S8 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDER1 FULL-ADDER111
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241

.> (rs)

- Rules for: application definition TEST-BCD-ADDER
AO Al A2 A3 BO B1 B2 B3 CARRY-IN ZERO HAlIl HAll2 HAl21

1A122 1A131 1A132 NA141 HA142 1A211 RA212 1A221 1A222 BA231
HA232 HA241 HA242 GA111 0R121 0R131 0R141 0R211 0R221 0R231
0R241 OR1 OR2 ANPI AND2 S1 S2 S4 S8 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDERI FULL-ADDER 11
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241 -

1) DO-EXECUTE
2) CHECK-SEMANTICS
.> (ar 1)

LED S1 = OFF
LED S2 = OFF
LED S4 = OFF
LED S8 = 0N
LED CARRY-OUT = ON
Rule successfully applied.
application definition TEST-BCD-ADDER

AO Al A2 A3 BO BE B2 B3 CARRY-IN ZERO HAll1 HA112 NA121
1A122 1A131 HA132 HA141 HA142 HA211 HA212 HA221 BA222 HA231
HA232 NA241 HA242 01111 01121 OR131 0R141 0R211 0R221 0R231
0R241 OR1 OR2 AID1 AID2 S1 S2 S4 S8 CARRY-OUT
BCD-ADDER-TEST BCD-ADDER FOUR-BIT-ADDERI FULL-ADDER111
FULL-ADDER121 FULL-ADDER131 FULL-ADDER141 FOUR-BIT-ADDER2
FULL-ADDER211 FULL-ADDER221 FULL-ADDER231 FULL-ADDER241

C-32



C.4 2 x 2 Binary Array Multiplier

This test case presents a circuit for multiplying two 2-digit binary numbers. It is

based on the following formula (27:365):

bl bO

al aO

aObi aObO

albi aibO

c3 c2 cl cO

C.4.1 Circuit Diagram See Figure C.5 (27:365).

C.4.2 Application Specification

application definition test-2x2-binary-array-multiplier

switch aO position: on
switch al position: on
switch bO position: on
switch bi position: on

and-gate andi
and-gate and2
and-gate and3
and-gate and4

half-adder HAI
half-adder HA2

led cO
led cl
led c2
led c3

application binary-array-test is
controls: binary-array
update procedure:

update binary-array

subsystem binary-array is
controls: aO, al, bO, bl,

C-33



AND-

ANDI

AN AND

HAI HA2

C SC S

C3 C2  Ci Cb

Figure C.5. 2 x 2 Binary Array Multiplier

C-34



and1, and2, and3, and4,
HAI, HA2,
cO, cl, c2, c3

update procedure:
update aO
update al
update bO
update bl
update andl
update cO
update and2
update and3
update HAI
update cl
update and4
update HA2
update c2
update c3

C.4.3 System/User Dialogue

.> (#> application definition test-2x2-binary-array-multiplier)
application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER

AO Al BO BI ANDI AND2 AND3 AND4 HAl HA2 CO CI C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY

.> (rs)
- Rules for: application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER

AO Al BO BE ANDI AND2 AND3 AND4 HAl HA2 CO C1 C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY -

2) CHECK-SEMANTICS
.> (ar 2)

More than one export can provide the data for INl
which is used by object C3

in subsystem BINARY-ARRAY
Choose the export item (subsystem and component)

that you wish to be the source of this data:
I> subsystem "BINARY-ARRAY" component "AO" name "OUT1"
2> subsystem "BINARY-ARRAY" component "Al" name "OUTI"
3> subsystem "BINARY-ARRAY" component "BO" name "OUTI"

4> subsystem "BINARY-ARRAY" component "Bl" name "OUTI"
5> subsystem "BINARY-ARRAY" component "ANDI" name "OUTi"
6> subsystem "BINARY-ARRAY" component "AND2" name "OUTi"
7> subsystem "BINARY-ARRAY" component "AND3" name "OUTI"
8> subsystem "BINARY-ARRAY" component "AND4" name "OUTI"
9> subsystem "BINARY-ARRAY" component "HAl" name "S"
10> subsystem "BINARY-ARRAY" component "HAl" name "C"
11> subsystem "BINARY-ARRAY" component "HA2" name "S"
12> subsystem "BINARY-ARRAY" component "HA2" name "C"
13> Specific source not required; use arbitrary one

Enter the number corresponding to the source you want to use

C-35



12

More than one export can provide the data for III
which is used by object C2

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
11

More than one export can provide the data for III
which is used by object CI

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
9

More than one export can provide the data for III
which is used by object CO

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for IN2
which is used by object HA2

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
8

More than one export can provide the data for III
which is used by object BA2

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
10

More than one export can provide the data for IN2
which is used by object HA1

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for Ill
which is used by object HAI

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
7

More than one export can provide the data for 112
which is used by object AND4

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
4

More than one export can provide the data for III

C-36



which is used by object AND4
in subsystem BINARY-ARRAY

Enter the number corresponding to the source you want to use
2

More than one export can provide the data for IN2
which is used by object AND3

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for INl
which is used by object AND3

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for IN2
which is used by object AND2

in subsystem BINARY-ARRAY

Enter the number corresponding to the source you want to use
4

More than one export can provide the data for INl
which is used by object AND2

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
1

More than one export can provide the data for IN2
which is used by object AND1

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for IN1
which is used by object ANDI

in subsystem BINARY-ARRAY
Enter the number corresponding to the source you want to use
1
Rule successfully applied.
application definition TEST-2X2-BINARY-ARRAY-NULTIPLIER

AO Al BO BI ANDI AND2 AID3 AMD4 HAI HA2 CO CI C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY

.> Urs)
- Rules for: application definition TEST-2X2-BIIARY-ARRAY-MULTIPLIER

AO Al BO BI ANDI AND2 AND3 AND4 HAl HA2 CO CI C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY -

1) DO-EXECUTE
2) CHECK-SEMANTICS
.> (ar 1)

C-37



LED CO = ON
LED CI = OFF
LED C2 = OFF
LED C3 = ON
Rule successfully applied.
application definition TEST-2X2-BINARY-ARRAY-MULTIPLIER

AO Al BO BI ANDI AND2 AND3 AND4 HAl HA2 CO Cl C2 C3
BINARY-ARRAY-TEST BINARY-ARRAY

C-38



C. 5 Universal Shift Register

This test case builds a universal 4-bit shift register which, depending on the value of

the select lines, can load 4 bits into the register, shift the contents of the register to the

left, shift the contents to the right or do nothing. Often these registers are constructed

using D flipflops. However, since the validating domain contains no D flipflops, JK flipflops

were substituted. Table C.2 summarizes the expected action for various select line values.

Table C.2. Universal Shift Register Controls

Is1 ] so Function I
0 0 If shift contents right
1 0 shift contents left
0 1 load input into register
1 1 do nothing

C.5.1 Circuit Diagram See Figure C.6 (8:287).

DO(3) ODO) D0(1) DO(O)

JK3 AK JK1 JKO
S..... K i A K_

Figure C.6. Universal Shift Register

C.5.2 Application Specification

C-39



application definition test-universal-shift-register

switch diO position: off
switch dil position: on
switch di2 position: off
switch di3 position: on

switch sO position: on
switch sl position: off

switch left-in position: off
switch right-in position: off
switch clock position: on

led doO
led dol
led do2
led do3

aux muxO
mux aux l

max mux2
mux -ux3

not-gate not-jO
not-gate not-j1
not-gate not-j2
not-gate not-j3

jk-flip-flop jkO state off
jk-flip-flop jkl state off
jk-flip-flop jk2 state off
jk-flip-flop jk3 state off

application universal-shift-register is
controls: universal-shift-reg
update procedure:

update universal-shift-reg
update universal-shift-reg

subsystem uuiversal-shift-reg is
controls: diO, dil, di2, di3, sO, si, left-in, right-in, clock,

doO, dol, do2, do3,
muxO, muxi, mux2, mux3,
jkO, jkl, jk2, jk3,
not-jO, not-jl, not-j2, not-j3

update procedure:
update diO
update dil
update di2
update di3

C-40



update right-in
update left-in
update clock
update sO
update si
if sI.outl and not sO.outl then

update mux3
update not-j3
update jk3
update mux2
update not-j2
update jk2
update muxl
update not-ji
update jkl
update muxO
update not-jO
update jkO
update do3
update do2
update dol
update doO

else
update muxO
update not-jO
update jkO
update muxl
update not-ji
update jkl
update mux2
update not-j2
update jk2
update uux3
update not-j3
update jk3
update do3
update do2
update dol
update doO

end if
setetate sO (position, off)
setstate sl (position, off)

C.5.3 System/User Dialogue

.> (#> application definition test-universal-shift-register)
application definition TEST-UNIVERSAL-SHIFT-REGISTER

DIO DI1 D12 D13 SO SI LEFT-IN RIGHT-Il CLOCK DOO DOI D02
D03 KUXO UXI K1UX2 KUX3 lOT-JO NOT-JI NOT-J2 IOT-J3 JKO JKI
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-REG

.> Crs)

C-41



- Rules for: application definition TEST-UNIVERSAL-SHIFT-REGISTER
DIO DlI D12 D13 SO S1 LEFT-IN RIGHT-IN CLOCK DO0 DOI DO2

D03 HUXO MUXl NUX2 NU13 NOT-JO NOT-Ji IOT-J2 NOT-J3 JKO JK1
JK2 JK3 UNIVERSaL-SIIFT-REGISTER UNIVERSAL-SHIFT-REG -

2) CHECK-SEMANTICS
.> (at 2)
There is more than one possibility for data with name OUTI

Choose the data you would like to use for evaluating the conditional

1> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-J3: name = OUT1

2> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-J2: name = OUTI

3> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-Ji: name = OUTI

4> In export area of subsystem UNIVERSAL-SHIFT-REG:
producer = NOT-JO: name = OUTI

5> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = 1UX3: name = OUTI
6> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = NUX2: name = OUTI
7> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = 1UXI: name = OUTI
8> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = XUXO: name = OUTI
9> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = CLOCK: name = OUT1
10> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = RIGHT-IN: name = OUTI
11> In export area of subsystem UNIVERSkL-SHIFT-REG:

producer = LEFT-IN: name = OUTi
12> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = Si: name = OUTI
13> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = SO: name = OUTI
14> In export area of subsystem UNIVERSAL-SHIFT-BEG:

producer = D13: name = OUTI
15> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = D12: name = OUTI
16> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = DI: name = OUTI
17> In export area of subsystem UNIVERSAL-SHIFT-REG:

producer = DIO: name = OUTI
12

More than one export can provide the data for INI
which is used by object NOT-J3

in subsystem UNIVERSAL-SHIFT-REG

Choose the export item (subsystem and component)
that you wish to be the source of this data:

1> subsystem "UNIVERSAL-SHIFT-REG" component "DIO" name "OUTI"
2> subsystem "UNIVERSAL-SHIFT-REG" component "DII" name "OUTI"

C-42



3> subsystem "UNIVERSAL-SHIFT-REG" component "D12" name "OUTi"
4> subsystem "UIIVERSAL-SHIFT-REG" component "DI3" name "OUTI"
5> subsystem "UIIVERSAL-SHIFT-REG" component "SO" name "OUTi"
6> subsystem "UIIVERSAL-SHIFT-REG" component "Si" name "OUT1"
7> subsystem "UNIVERSAL-SHIFT-REG" component "LEFT-IN" name "OUTV"
8> subsystem "UIIVERSAL-SHIFT-REG" component "RIGHT-IN" name "OUTI"
9> subsystem "UIIVERSAL-SHIFT-REG" component "CLOCK" name "OUTI"
10> subsystem "UNIVERSAL-SHIFT-REG" component "NUXO" name "OUTI"
11> subsystem "UIIVERSAL-SHIFT-REG" component "NUXl" name "OUTi"

12> subsystem "UNIVERSAL-SHIFT-REG" component "NUX2" name "OUTi"
13> subsystem "UNIVERSAL-SHIFT-REG" component "NUX3" name "OUTI"
14> subsystem "UNIVERSAL-SHIFT-REG" component "JKO" name "Q"
15> subsystem "UNIVERSAL-SHIFT-REG" component "JKO" name "Q-BAR"
16> subsystem "UIIVERSAL-SHIFT-REG" component "JKI" name "Q"
17> subsystem "UNIVERSAL-SHIFT-REG" component "JKI" name "Q-BAR"
18> subsystem "UNIVERSAL-SHIFT-REG" component "JK21" name "Q"
19> subsystem "UNIVERSAL-SHIFT-REG" component "JK2" name "Q-BAR"
20> subsystem "UNIVERSAL-SHIFT-REG" component "JK3" name "Q"
21> subsystem "UNIVERSAL-SHIFT-REG" component "JK3" name "Q-BAR"
22> subsystem "UNIVERSAL-SHIFT-REG" component "NOT-JO" name "OUTI"
23> subsystem "UNIVERSAL-SHIFT-REG" component "IOT-JI" name "OUTI"

24> subsystem "UIIVERSAL-SHIFT-REG" component "IOT-J2" name "OUTI"
25> subsystem "UIIVERSAL-SHIFT-REG" component "NOT-J3" name "OUTi"
26> Specific source not required; use arbitrary one

Enter the number corresponding to the source you want to use
13

More than one export can provide the data for INl

which is used by object NOT-J2
in subsystem UIIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
12

More than one export can provide the data for INl

which is used by object XOT-JI
in subsystem UIIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
11

More than one export can provide the data for INI

which is used by object WOT-JO
in subsystem UNIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
10

More than one export can provide the data for CLK
which is used by object JK3

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
9

C-43



More than one export can provide the data for K
which is used by object JK3

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
25

More than one export can provide the data for J
which is used by object JK3

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
13

More than one export can provide the data for CLK
which is used by object JK2

in subsystem UNIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
9

More than one export can provide the data for K
which is used by object JK2

in subsystem UNIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
24

More than one export can provide the data for J
which is used by object JK2

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
12

More than one export can provide the data for CLK
which is used by object AKl

in subsystem UNIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
9

More than one export can provide the data for K
which is used by object JKA

in subsystem UNIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
23

More than one export can provide the data for J
which is used by object JK1

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
11

More than one export can provide the data for CLK
which is used by object JKO

C-44



in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
9

More than one export can provide the data for K
which is used by object JKO

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
22

More than one export can provide the data for 3
which is used by object JKO

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
10

More than one export can provide the data for Si
which is used by object MUX3

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for SO
which is used by object NUX3

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for IN3
which is used by object MUX3

in subsystem UNIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
20

More than one export can provide the data for IN2
which is used by object MUX3

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
18

More than one export can provide the data for IN1

which is used by object MUX3
in subsystem UNIVERSAL-SHIFT-REG

Enter the number corresponding to the source you want to use
4

More than one export can provide the data for IO
which is used by object MUX3

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
7

C-45



Nore than one export can provide the data for Si
which is used by object MUX2

in subsystem UIIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for SO
which is used by object 1UX2

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
S

More than one export can provide the data for IN3
which is used by object MUX2

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
18

More than one export can provide the data for IN2
which is used by object NU12

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for INI
which is used by object MUX2

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
3

More than one export can provide the data for INO
which is used by object MUX2

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
20

More than one export can provide the data for Si
which is used by object NUXi

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for SO
which is used by object NUX1

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for IN3
which is used by object MUX1

C-46



in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for IN2
which is used by object MUX1

in subsystem UNIVERSAL-SHIFT-REG
CEnter the number corresponding to the source you want to use
14

More than one export can provide the data for INl
which is used by object WUXI

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
2

More than one export can provide the data for INO
which is used by object MUX1

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
18

More than one export can provide the data for SI
which is used by object MUXO

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
6

More than one export can provide the data for SO
which is used by object MUXO

in subsyst~an UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
5

More than one export can provide the data for IN3
which is used by object MUXO

in subsystem UNIVERSAL-SHIFT-RLl
Enter the number corresponding to the source you want to use
14

More than one export can provide the data for IN2
which is used by object MUXO

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
8

More than one export can provide the data for INl
which is used by object NUXO

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
1

C-47



More than one export can provide the data for INO
which is used by object MUXO

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for INI
whicL is used by object D03

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
20

More than one export can provide the data for IN1
which is used by object D02

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
18

More than one export can provide the data for INI
which is used by object DOI

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
16

More than one export can provide the data for INI
which is used by object DOO

in subsystem UNIVERSAL-SHIFT-REG
Enter the number corresponding to the source you want to use
14
Rule successfully applied.
application definition TEST-UIIVERSAL-SHIFT-REGISTER

DIO DII D12 D13 SO Si LEFT-IN RIGHT-IN CLOCK DOO DO1 D02
D03 MUXO MUXI MUX2 MUX3 NOT-JO NOT-Ji NOT-J2 NOT-J3 JKO JKI
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-REG

.> (rs)
- Rules for: application definition TEST-UNIVERSAL-SHIFT-REGISTER

DIO DlI D12 D13 SO S1 LEFT-IN RIGHT-IN CLOCK DOO DOI D02
D03 MUXO MUX1 MUX2 MUX3 NOT-JO NOT-JI NOT-J2 NOT-J3 JKO JKi
JK2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-REG -

1) DO-EXECUTE
2) CHECK-SEMANTICS
.> Car 1)

LED D03 = ON
LED D02 = OFF
LED DOI = ON
LED DOO = OFF
LED D03 = OFF
LED D02 = ON
LED DOI = OFF
LED DOO = ON

C-48



Rule successfully applied.
application definition TEST-UNIVERSAL-SHIFT-REGISTER
DIO DlI D12 DI3 SO Si LEFT-IN RIGHT-IN CLOCK DOO DOI DO2
D03 NUXO MlXIi MUX2 MUX3 NOT-JO NOT-il NOT-J2 NOT-J3 JKO JKI
3K2 JK3 UNIVERSAL-SHIFT-REGISTER UNIVERSAL-SHIFT-KEG

C-49



Appendix D. Code

This appendix contains the REFINE source code for the Preprocessing, Semantic

Check and Execute portions of Architect, the application composer described in Section 4.1.

Each section corresponds to an individual source code file.

D.1 Globals Definitions

! in-package("RU")
!! in-grammar('user)

#11

File name: globals.re

Description: Contains all the global constants and variables.

I 1

constant Saved-Suffix : string = "-SAVED"

constant Generics-Path : string = "../generics/"

constant Applic-Path : string = "../applics/"

constant Object-Path : string = "../objs/"

constant separator : char = #\.

var Fatal-Error boolean = false

var Changes-Made : boolean = false

var Semantic-Checks-Performed : boolean = false

D.2 REFINE Domain Model

! in-package("RU")
!! in-grammar('user)

#11
File name: dm-ocu.re

Description:

D-I



This version includes only the domain-independent dm
data. Domain-specific domain knowledge is included in the
technology base in the file for the corresponding object
class.

11#

Y% OBJECT CLASSES:

var World-Obj : object-class subtype-of user-Object

vat Spec-Obj : object-class subtype-of World-Obj
% A high-level object that ties together all of the parts of an
% application definition

var Spec-Part-Obj : object-class subtype-of World-Obj
%. Spec-Parts describe all of the senetences used by the application
% specialist to build an application definition

var Incomplete-Obj : object-class subtype-of Spec-Part-Obj
var Generic-Inst : object-class subtype-of Spec-Part-Obj
var Load-Obj : object-class subtype-of Spec-Part-Obj

var Component-Obj : object-class subtype-of Spec-Part-Obj
%. Component-Obj's are all the parts of a final definition

var Application-Obj : object-class subtype-of Component-Obj
var Subsystem-Obj : object-class subtype-of Component-Obj
var Primitive-Obj : object-class subtype-of Component-Obj

var Statement-Obj : object-class subtype-of World-Obj
var If-Stmt-Obj : object-class subtype-of Statement-Obj
var While-Stmt-Obj : object-class subtype-of Statement-Obj
var Call-Obj : object-class subtype-of Statement-Obj

var Update-Call-Obj object-class subtype-of Call-Obj
var Create-Call-Obj : object-class subtype-of Call-Obj
var SetFunction-Call-Obj : object-class subtype-of Call-Obj
var SetState-Call-Obj : object-class subtype-of Call-Obj
var Destroy-Call-Obj : object-class subtype-of Call-Obj
var Initialize-Call-Obj : object-class subtype-of call-obj
var Stabilize-Call-Obj : object-class subtype-of call-obj
var Configure-Call-Obj : object-class subtype-of call-obj

var Import-Export-Obj : object-class subtype-of World-Obj
var Import-Obj : object-class subtype-of Import-Export-Obj
var Export-Obj : object-class subtype-of Import-Export-Obj
var Name-Value-Obj object-class subtype-of World-Obj
var Source-Obj : object-class subtype-of World-Obj

var Generic-Obj : object-class subtype-of World-Obj

D-2



%%% ATTRIBUTES:

% Spec-Obj:
var Spec-Parts mapCSpec-Obj, seq(Spec-Part-Obj))

computed-using
Spec-Parts Cx) =L

% Incomplete-Obj:
var Obj-Type map(Incomplete-Obj, symbol) ={I}

%. Generic-last:
var Generic-To-Be-Used : apCGeneric-Inst, symbol) ={I}

var Generic-Parameters map(Generic-Inst, seq~any-type))
computed-using

Generic-Parameters Cx) 0

%. Load-Obj:
var abject-To-Load :map(Load-Obj, symbol) {II

%. Application-Obj:
var Application-Components :mapCApplication-Obj, seq(symbol))

computed-using
Application-Components~x) =C

var Application-update :mapCApplication-Obj, seq(Statement-Obj))
computed-using
Application-update(x) =0

%. Subsystem-abj:
var Controllees mapCSubsystem-Obj, seq~syiubol))

computed-using
controllees(x) =0

%% changed seq to set in import-Area and Export-Area ...

var Import-Area :mapCSubsystem-Obj, set(Import-Obj))
computed-using
Import-Area~x) 0

var Export-Area :map(Subsystem-Obj, set(Export-Obj))
computed-using

Export-Area~x) ={

var Update :map(Subsystem-Obj, seq(Statement-Obj))
computed-using

Update(x) =0

var Initialize : ap(subsystem-obj, seq~name-value-obj))
computed-using

Initialize(x) D

V% Statements:

D-3



% If-Stmt-Obj

var If-Cond map(If-stmt-Obj, Expression) {I}
var Then-Stats map(If-stmt-Obj, seqCStatement-Obj))
computed-using

Then-stmts(x) 0
var Else-Stats map(If-stmt-Obj, seqCStatement-Obj))
computed-us ing

Else-Stmts~x) 0 E

%. While-Stmt-Obj:

var While-cond map(While-stmt-Obj, expression) {tI
var While-stats mapCWhile-stmt-Obj, seqCStatement-Obj))

computed-using
While-stats(x) =0

% Call-Obj:
vax operand map(Call-Obj, symbol) {I}

% Create-CaJll-Obj:
vax object-type map~create-Call-Obj, symbol) = f ill

% SetFunction-Call-Obj:
var function-name : ap(SetFunction-Call-Obj, symbol) = f ill
vax coefficients :map(SetFunction-Call-Obj, set(name-value-Obj))

computed-using
coefficients(x) ={

% SetStat.-Call-Obj:
vax state-changes :map(SetState-Call-Obj, set~name-value-Obj))

computed-using
state-changes Cx) ={

% Import-Obj:
vax import-name :aap(Iaport-Obj, symbol) = fill
var import-category :map(Import-Obj, symbol) = fill
vax import-type-data : ap(Import-Obj, symbol) = {11}
vax consumer : ap(Import-Obj, symbol) = f ill
var Source :map(Import-Obj, set(Source-Obj))

computed-using
Source(x) ={

% Export-Obj:
vax export-name map (Export-Obj, symbol) f {ill
vax export-category map(Export-Obj. symbol) ={I

vax export-type-data mapCExport-Obj, symbol) {I
vax value map(Export-Obj, any-type) f ill}
vax producer nap(Export-Obj, symbol) {I

D-4



% Name-Value-Obj:
var Name-value-Name : map(lame-value-Obj, symbol) {I }
var Name-value-value : map(Name-value-Obj, any-type) = {1I }

% Source-Obj:
var Source-Subsystem map(Source-Obj, symbol) = II }
var Source-Object map(Source-Obj, symbol) = {II}
var Source-Name map(Source-Obj, symbol) = {I }

% Generic-Obj:
var Obj-Instance map(Generic-Obj, Symbol) = {I I}
var Placeholder-IDs map(Generic-Obj, seq(any-type))

computed-using
Placeholder-IDs(x) = 0

var Placeholder-Type map(Generic-Obj, seq(symbol))
computed-using

Placeholder-Type(x) = 0

% Code for Boolean-expressions
var Expression : object-class subtype-of World-Obj

var Literal-Expression : object-class subtype-of expression

var Identifier : object-class subtype-of Literal-Expression
var Boolean-Literal : object-class subtype-of Literal-Expression

var True-Literal : object-class subtype-of Boolean-Literal
var False-Literal : object-class subtype-of Boolean-Literal

var Number-Literal : object-class subtype-of Literal-Expression
var Integer-Literal : object-class subtype-of Number-Literal
var Real-Literal : object-class subtype-of Number-Literal

var String-Literal : object-class subtype-of Literal-Expression

var Unary-Expression object-class subtype-of Expression
var Iot-Exp object-class subtype-of Unary-Expression
var abs-exp object-class subtype-of unary-expression
var negate-exp : object-class subtype-of unary-expression
var positive-exp object-class subtype-of unary-expression

var Binary-Expression object-class subtype-of Expression
var Or-Exp object-class subtype-of Binary-Expression
var And-Exp object-class subtype-of Binary-Expression
var Equal-Exp object-class subtype-of Binary-Expression
var Not-Equal-Exp object-class subtype-of Binary-Expression
var LT-Exp object-class subtype-of Binary-Expression
var LTE-Exp object-class subtype-of Binary-Expression
var GT-Exp object-class subtype-of Binary-Expression
var GTE-Exp object-class subtype-of Binary-Expression

D-5



var add-exp : object-class subtype-of Binary-Expression
vax subtract-exp :object-class subtype-of Binary-Expression
var multiply-exp, object-class subtype-of Binary-Expression
var divide-exp object-class subtype-of Binary-Expression
var mod-exp :object-class subtype-of Binary-Expression
var .xponential-exp :object-class subtype-of Binary-Expression

%% Attributes for expressions:
var Id-lame map(ldentifier, symbol)={I}
var Id-Source map(Identifier, imxport-export-obj) {I}

var Imt-value :map(Integer-Literal, integer)=fiI
var Real-value : uap(Real-Literal, real) = f II}
var Boolean-value :map(Boolean-Literal, boolean) ={

var String-value map(String-Literea, string) ={I}

var Argumenti map(Binary-Expression, Expression) = I}
var Argument2 :mapCBinary-Expression, Expression) ={I}

var Argument :map(Unary-Expression, Expression) ={I}

UX Tree Attributes For Expressions
Form Expression-Attrs
def ine-tree-attributes 'Binary-Expres sion, {'Argumentl, 'Argwnent2});
def ine-tree-attributes C'Unary-Express ion. f{'Argument})

Form Define-AST
def ine-tree-attributes C 'hile-Stmt-Obj , {'While-Cond. 'While-Stats});
define-tree-attributes(' If-Stmt-Obj, {'If-Cond, 'Then-Stats, 'Else-Stmts});
dotfine-tree-attributes (ICall-Obj , f{'Operand));
define-tree-attributes(C'SetFunction-Call-Obj, { 'Function-lame,

'Coefficients});
define-tree-attributes('SetState-Ca~ll-Obj, {'state-changes});
doefine-tree-attributes( 'Application-Obj, f{'Application-Components,

'Application-Update});
define-tree-attribuates( 'Subsystem-Obj,

{'Controllees, 'Update, 'Initialize, 'Export-Area, 'Import-Areal);
del ine-tre,-attributes ( 3'Spec-Obj , {'Spec-Parts});
define-tre.-attributes( 'Iaport-Obj, {'Import-lame, 'Import-Category,

'Import-Type-Data, 'Source, 'Consumer));
define-tree-attributes( 'Export-Obj, { 'Export-lame, 'Export-Category,

'Export-Type-Data, 'Value, 'Producer});
define-tree-attribute.C 'Generic-Obj, { 'Obj-Instance, 'Placeholder-Ids})

form Rake-lames-Unique
unique-nages-class(C'Spec-Obj, true);
unique-names- class( I'Application-Obj , true);
unique-nazes-clasaC 'Subuystem-Obj, true);
unique-nameu-clasu( 'Generic-Obj, true);
uniqu.-naaeu-clasu( 'Generic-Inst, true);

D-6



unique-names-class('Load-Obj, true);
unique-names-class('Incomplete-Obj, true)

D.3 OCU Grammar

!! in-package("RU")
!! in-grammar('syntax)

#11
File name: gram-ocu.re

Description: The OCU grammar - all of the domain-independent productions, most of which
describe the OCU model

NOTE: If you change this file, you must also recompile the domain-specific grammar.

If no changes are made to that grammar, erase its .fasl4 file to make sure it
recompiles. Otherwise, you won't see the changes made to the OCU grammar.

(See the DIALECT User's guide about grammar inheritance)
Rules:

None

Functions:

None

I I

grammar OCU

no-patterns

start-classes Spec-Obj, Subsystem-obj, Incomplete-obj, Load-Obj, Generic-Obj

file-classes Spec-Obj, Subsystem-obj, Incomplete-obj, Load-Obj, Generic-Obj

productions

Spec-Obj ::= ["application" "definition" name {Spec-Parts + ""} ]

builds Spec-Obj,

Application-Obj : : ["application" name "is"
"controls::" application-components * ","

"update procedure:"

application-update * ""I builds Application-Obj,

Subsyetem-Obj :: ["subsystem" name "is"o

"controls :" Controllees * ","
{("imports:" Import-Area * ""]}

{ ("exports:" Export-Area * "") }
{["initialize procedure:"

D-7



initialize *
"update procedure:"

update * "Ill ] builds Subsystem-Obj,

Import-Obj = [import-name import-category import-type-data
consumer "(" [source * ""ll] ")"] builds Import-Obj,

Export-Obj = [export-name export-category export-type-data
value producer] builds Export-Obj,

Source-Obj [Source-Name Source-Subsystem Source-Object]
builds Source-Obj,

Generic-Inst = ["generic" name "is" "new" Generic-To-Be-Used
Generic-Parameters * ",") builds Generic-Inst,

Incomplete-Obj ["object" obj-type "," name] builds Incomplete-obj,

Load-Obj ["load" Object-To-Load] builds Load-Obj,

If-Stmt-Obj = ["if" if-cond "then" Then-Stints + "l
{["else" Else-Stints + ""..1}
"end" "if" I builds If-Stmt-Obj,

While-Stmt-Obj = ["while" while-cond "loop"
While-Stints * ""
"end" "while" I builds While-Stat-Obj,

Update-Call-Obj ["update" operand] builds Update-Call-Obj,

Create-Call-Obj ["create" operand object-type] builds Create-Call-Obj,

SetFunction-Call-Obj = ["setfunction" operand function-name
Coefficients * ""I builds SetFunction-Call-Obj,

SetState-Call-Obj ["setstate" operand
State-Changes * ""] builds SetState-Call-Obj,

Destroy-Call-Obj = ["destroy" operand) builds Destroy-Call-Obj,

Initialize-Call-Obj ["initialize" operand] builds Initialize-Call-Obj,

Configure-Call-Obj = ["configure" operand] builds Configure-Call-Obj,

Stabilize-Call-Obj = ["stabilize" operand) builds Stabilize-Call-Obj,

Name-Value-Obj = ["C" name-value-name ","

name-value-value ")"] builds lame-Value-Obj,

Generic-Obj = ["generic-obj" name Obj-Instance

D-8



"ids:$$ {Placeholder-IDs + ","I
"types:" {Placeholder-Type + ","})] builds Generic-Obj,

And-Exp :: [argumentl "and" argument2) builds And-Exp,
Or-Exp :: [argumentl "or" argument2] builds or-Exp,

Equal-Exp ::= [argumenti "" argument2] builds Equal-Exp,
Not-Equal-Exp ::= [argumentl "/=" argument2] builds Iot-Equal-Exp,
LT-Exp : [argument1 "<" argument2] builds LT-Exp,
LTE-Exp : [argumenti "<=" argument2] builds LTE-Exp,
GT-Exp = [argument 1 ">" argumnent2J builds GT-Exp,
GTE-Exp [argumentl ">=" argument2J builds GTE-Exp,

Add-Exp [argumentl "+" argument2) builds Add-Exp,
Subtract-Exp ::= [argumentl "-" argument2J builds Subtract-Exp,

Multiply-Exp :: Eargumentl "*" argument2j builds Multiply-Exp,
Divide-Exp :: [argumentl "/" argument2] builds Divide-Exp,
Mod-Exp : = [argument 1 "mod" argument2] builds Mod-Exp,
Exponential-Exp :: [argumenti "**" argument2J builds Exponential-Erp,

Abs-Exp ["abs" argument] builds Abs-Exp,
Not-Exp :: ["not" argument] builds lot-Exp,
legate-Exp :: ["-" argument] builds legate-Exp,
Positive-Exp ::= ["+" argument] builds Positive-Exp,

Identifier :: [Id-Name] builds Identifier,
Integer-Literal ::= [int-Value] builds Integer-Literal,
Real-Literal : : = [Real-Value] builds Real-Literal,
String-Literal : : = [String-Value] builds String-Literal,
True-Literal [: = "true"] builds True-Literal,
False-Literal : := ["false"] builds False-Literal

symbol-start-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ."

symbol-cent inue-chars
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-O 123456789."

precedence
for expression brackets "(" matching ")"

(same-level "and", "or" associativity left),
(same-level "<", "<=", "0"= ">=", ">", "/=" associativity none),

(same-level "+","-" associativity left),
(same-level "*", "P", "mod" associativity left),

(same-level "not" associativity none),
(same-level "aba" associativity none),
(same-level "**" associativity right)

end

D-9



D.4 Imports-Exports

!! in-package("RU")
!! in-grammar('user)

#11
File name: imports-exports.re

This file encapsulates the import/export-related processing in one place

I1#

/.Y. PREPROCESSING

7.7. Build-Import-Export-Area -- Considered part of "preprocessing". Called from
U. semantic-checks to build import/export areas. It sets up the import area
%.%. and export area of the subsystem (input parameter, subsystem). It
%% enumerates over all the controllees of the subsystem. If the controllee
.'. is a primitive object, it adds a new import-obj to the import-area for
.%. each member of the object's INPUT-DATA, if there is not already an
%.V. import-obj there with the same id (uses import-symbols to keep track).
Y.%. Same kind of thing for the exports...

function build-import-export-area (subsystem : subsystem-obj) =

(enumerate ctrlee over controllees(subsystem) do

let (obj : component-obj =
find-object( 'component-obj, ctrlee))

if primitive-obj(obj) then
% Are there any import items for this primitive object
%A in subsystem's import area?
%A If not, added object's input-data to import area.

let (import-set : set(import-obj) =
x I (x:import-obj) import-obj(x) k

parent-expr(x) = subsystem k
consumer(x) = name(obj)})

(if size(import-set) = 0 then
%A No imports yet for this object; add them

let (input-data : set(import-obj) =
get-input-output-variable(obj, "INPUT-DATA"))

enumerate import over input-data do
set-attrs(import, 'consumer, name(obj));
set-attrs(subsystem, 'import-area,

D-1O



import-area(subsystem) with copy-term(import))
%. use copy-term so it makes a copy of the object.
% not just a pointer to it

% Are there any export items for this primitive object
% in subsystem's export area?
% If not, add object's output-data to export area.

let (export-set : set(export-obj) =
{x I (x:export-obj) export-obj(x)

parent-expr(x) subsystem &

producer(x) = name(obj)})
(if size(export-set) = 0 then

% No exports yet for this object; add them
let (output-data : set(export-obj) =

get-input-output-variable(obj, "OUTPUT-DATA"))
enumerate export over output-data do

set-attrs(export, 'producer, name(obj));
set-attrs(subsystem, 'export-area,

export-area(subsystem) with copy-term(export))
% use copy-term so it makes a copy of the object,
% not just a pointer to it

)

% Nov that we've ensured all input-data and output-data for
% all primitive object controllees are in import/export area,
% must remove any extraneous ones (belonged to primitive objects
%. which are no longer part of the subsystem)

let (imports-not-used : set(import-obj) =
{x I (x:import-obj) import-obj(x) &

parent-expr(x) = subsystem &
consumer(x) -in controllees (subsystem) })

(enumerate import over imports-not-used do
set-attrs(subsystem, 'import-area, import-area(subsystem) less import)

let (exports-not-used : set(export-obj) =
{x I (x:export-ob4) export-obj(x) k

parent-expr(x) = subsystem&

producer(x) -in controllees(subsystem)})

(enumerate export over exports-not-used do
set-attrs(subsystem, 'export-area, export-area(subsystem; less export)

)

D-11



U,7 Determine-Sources-for-Condit 4 onals -- Considered part of preprocessing.
V7% Called by semantic-checks after the subsystem's import and export areas
U are built to associate each identifier (in an if/while condition) with an
7%7. import-obj or export-obj in the subsystem's import/export areas.
UV7 Each identifier in a conditional must reference an import-obj or export-obj
YO,, in its subsystem's import area or export-area (as there is no "get-state"
U% interface in the OCU model, all identifiers in conditionals must reference
7,7, import/export areas, the only data available). This process is very like
U.7 obtaining the source for import-objs...

function determine-sources-for-conditionals ( subsystem : subsystem-obj ) =

let (identifiers : seq (identifier) =
E i I (i:identifier) identifier(i) &

least-ancestor-of-class(i, 'subsystem-obj) = subsystem])

enumerate id over identifiers do
if undefined?(id-source(id)) then %. do not yet have any source

let (id-string : string = symbol-to-string(id-name(id)))
if separator in id-string then % user has qualified id name

extract-and-set-id-source(id)
else

get-id-source-for-conditional (id)
else

format(t, "VY/There is already a source specified for id -s",
id-name (id));

format(t, " in conditional expressionV");
format(t, " in subsystem -s-%",

name(least-ancestor-of-class(id, 'subsystem-obj)));
(if import-obj(id-source(id)) then

format(t, " The source is the import item -s-%",
import-name(id-source(id)));

format(t, " consumed by -s%11",

consumer(id-source(id)))
else

format(t, " The source is the export item -s-%",
export-name(id-source(id)));

format(t, " produced by -s%11",
producer(id-source(id)))

if lisp: :y-or-n-p("Do you want to select a different source?") then
get-id-source-for-conditional (id)

%V. Determine-Import-Sources -- Considered part of "preprocessing". Called
UV. by semantic-checks if there are no errors to determine wALich export-obj
%%/ will serve as the source of the data to be requested by each import-obj.
%%Y. If no source currently exists, go figure out which one to use
%7% (via get-source); else, present the currently specified to the user
%VY. who may want to (and can) change it.

D-12



function determine-import-sources (subsystem : subsystem-obj) =

enumerate import over import-area(subsystem) do

if empty(source(import)) then %A no source currently specified
get-source (import)

else

(if size(source(import)) = 1 then
% a particular source was selected previously

let (source-info : source-obj = arb(source(import)))

format(t, "-%.'%There is already a source specified for s
import-name(import));

format(t, " which is used by object -s -%",
consumer Cimport) );

format(t, " in subsystem s
name (parent-expr(import)));

format(t, " The source is: "s'%", source-name(source-info));
format(t, " produced by object -s-%", source-object(source-info));
format(t, " in subsystem s-.", source-subsystem(source-info))

else

format(t, "7An arbitrary source is to be used for -s-%",
import-name (import) );

format(t, " which is used by object -s-%",
consumer(import));

format(t, " in subsystem -s%",
name (parent-expr(import)))

if (lisp: :y-or-n-p("Do you want to select a different source?")) then
get-source(import)

% ------------------------------------------------------------------------

% ------------------------------------------------------------------------

XXY, PREPROCESSING UTILITIES
% ----------------------------------------------------------------------------

%.V. Get-Source -- Used by Determine-Import-Sources. First, sets the import's
I.V. source to the null set (either it is null to start or the user wants to
UX wipe out what is already there. Then find all export-objs within the
UX same application definition (spec-obj) which can provide the kind of
X.X. data needed by import. If only one export-obj can be the source, use it.

D-13



UX Otherwise, present the possible choices to the user who must specify
'.Y. which one he wants to use.

function get-source(import : import-obj) =

set-attrs(import, 'source, {}); % wipe out whatever was there

let (export-seq : seq(export-obj) =
[source-export I (source-export:export-obj)

export-obj (source-export) &
export-category(source-export) = import-category(import) &
up-to-root(source-export) = up-to-root(import) &
subsystem-obj (parent-expr ((source-export)))])

% added this last one so it won't find
% the import/export-objs which are in the variables
% (e.g. THING-OBJ-INPUT)

if size(export-seq) < 1 then
U% Error - should not occur at this time;
Y.X. Supposed to catch this error during semantic checks;
%% this is called only if there are no errors...

format(t, "Error: No subsystem provides -s type of data-.",
symbol-to-string(import-category (import)) ));

undefined

elseif size(export-seq) = I then

format (debug-on,
"There is only one possible source for this info; use it-%");

set-import-source(import, {export-seq(1)})

else
7.7. More than one subsystem provides this data-item.
%.Y. Prompt the user to select the one to be used...
%% and store its name for future reference
X.X. OR if user doesn't care where data comes from, store

UX all possible choices...

let (user-choice : integer = prompt-for-source(import, export-seq))

(if user-choice <= size(export-seq) then
X.X. User has selected a particular source lor this data;
%% set source (import) to this selected source only...

set-import-source(import, {export-seq(user-choice)})
else

UX User has indicated he doesn't care where import data
X.X. comes from; set source(import) to all the possible sources

set-import-source(import, seq-to-set(export-seq))
)

% ---------------------------------------------------------------------
XX Set-Import-Source -- loops through all export-objs in set-to-set,

D-14



Y%%, creating a new source-obj for each element of set-to-set and setting
%Y. its attributes (source-subsystem and source-object), based on
%% info in and about each element of set-to-set. Called by Get-Source

function set-import-source(import : import-obj,
set-to-set set(export-obj))=

enumerate x over set-to-set do
let (s : source-obj = make-object('source-obj))
source-subsystem(s) <- name(parent-expr(x));
source-object(s) <- producer(x);
source-name(s) <- export-name(x);

source(import) <- source(import) with s
% ------------------------------------------------------------------------

YY, Prompt-for-Source -- given a sequence of export-objs to choose from,
XU display each possible choice and prompt the user to choose one.
U The last choice is always "don't care", i.e., 4se arbitrary source.
Y,% Returns number chosen by the user.

function prompt-for-source (import : import-obj,

seq-to-choose-from : seq(export-obj)) : integer =

format(t, "XMore than one export can provide the data for -s%1,
import-name (import));

format(t, " which is used by object -s-',
consumer (import));

format(t, " in subsystem -s-%",
name (parent-expr (import)));

format(t, "Choose the export item (subsystem and component)YX");
format(t, " that you wish to be the source of this data: 1,");

(enumerate index from 1 to size(seq-to-choose-from) do
format(t, " d> subsystem -s component "s name -s%1,

index,
symbol-to-string(name(parent-expr(seq-to-choose-from(index)))),
symbol-to-string(producer(seq-to-choose-from(index))),
symbol-to-string(export-name(seq-to-choose-from(index))))

format(t, " "d> Specific source not required; use arbitrary one-%",
size(seq-to-choose-from)+1);

format(t, "Enter the number corresponding to the source you want to use-%");
read-input C)

% ------------------------------------------------------------------------

YY, The following functions are used when handling identifiers in "if" and
U. "while" conditions. As they deal with import and/or export areas, these
U, functions have been placed in -..his file to localize any import/export
U changes (and there have been a lot of them!).

D-15



------ --

U Extract-and-Set-Id-Source -- Separates the consumer/producer from the
U id name and uses this info to find the appropriate import or export
U object for the id's source. The separator is a constant which is set
U in globals.re

function extract-and-set-id-source ( id : identifier ) =

let (id-name-string : string = symbol-to-string(id-name(id)))

let (source-object-name string = "", 7% consumer/producer name
source-name : string : ""= %. id name
position-of-separator : integer = size(id-name-string)+1)

% Extract the consumer/producer name and id name
(enumerate index from I to size(id-name-string) by 1 do

if id-name-string(index) = separator then
position-of-separator <- index

elseif position-of-separator > size(id-name-string) then
source-object-name <-

append(source-object-name, id-name-string(index))
else

source-name <- append(source-name, id-name-string(index))

set-attrs(id, 'id-source, undefined); %' wipe out what was there

let (subsystem : subsystem-obj =

least-ancestor-of-class (id, 'subsystem-obj))

let (import-set set(object) =

{import I (import:import-obj) import-obj(import) &
import in import-area(subsystem) &
import-name(import) = string-to-symbol(source-name, "RU") &

consumer(import) = string-to-symbol(source-object-name, "RU")},

export-set : set(object) :
{export I (export:export-obj) export-obj (export) &

export in export-area(subsystem) &
export-name(export) = string-to-symbol(source-name, "RU") &
producer(export) = string-to-symbol(source-object-name, "RU")})

let (possible-choices : seq(object) =
set-to-seq(import-set union export-set))

if empty(possible-choices) then
foruat(t,

"There is no possible data in subsystem for conditional identifier -s
id-name (id))

elseif

D-16



size(possible-choices) = I then %. there is only 1 place to get this info
set-attrs(id, 'id-source, possible-choices(1));
set-attrs (id, 'id-name, string-to-symbol (source-name, "RU"))

else % The qualification was not precise enough
foruat(t, "More than one import/export item meets the qualification. "");

format(t, " Please contact the software engineer/domain engineer. "%')

Y Get-ld-Source-for-Conditional -- First, sets the identifier's
U source to undefined (either it is null to start or the user wants to
U.V. wipe out what is already there). Then find all import/export-objs within
U the subsystem which could be the source of data for this id (i.e., that
U have the same name. If only one can be the source, use it. Otherwise,
U present the possible choices to the user who must specify which one he
U wants to use.

function get-id-source-for-conditional ( id : identifier ) -

set-attrs(id, 'id-source, undefined); V wipe out what was there

let (subsystem : subsystem-obj =
least-ancestor-of-class(id, 'subsystem-obj))

let (import-set set(object) =
{import i (import:import-obj) import-obj(import) &

import in import-area(subsystem) *
import-name(import) = id-name(id)),

export-set : set(object)=

{export I (export: export-obj) export-obj (export) &
export in export-area(subsystem) &
export-name(export) = id-name(id)})

let (possible-choices : seq(object) =

set-to-seq(import-set union export-set))

if empty(possible-choices) then
format(t,

"There is no possible data in subsystem for conditional identifier -s V1,

id-name (id))
else

if size(possible-choices) = 1 then %. there is only 1 place to get this info
format(t, "There is only one possible choice for -s, so select it-.",

id-name(id));
set-attrs(id, 'id-source, possible-choices(1))

else %A ask the user which import/export obj to use for source
let (choice : integer =

prompt-for-conditional-source(id-name(id), pos sible-choices))
set-attrs(id, 'id-source, possible-choices(choice))

%--------------------------------------------------------------

D-17



U Prompt-for-Conditional-Source -- very similar to Prompt-for-Source
U but the printing format and messages are a little different.
U Given a sequence of export-objs to choose from, display each possible
U choice and prompt the user to choose one.
U Called by get-id-source-for-conditional.

function prompt-for-conditional-source
(looking-for symbol,
seq-to-choose-from seq(object)) : integer =

format(t, "There is more than one possibility for data with name 's-%", looking-for);
format(t, " Choose the data you would like to use for evaluating the conditional'V.");

(enumerate index from 1 to size(seq-to-choose-from) do
if import-obj(seq-to-choose-from(index)) then

format(t, " d> In import area of subsystem -s: consumer = -s: name = -s-%",
index, name(parent-expr(seq-to-choose-from(index))),
consumer(seq-to-choose-from(index)),
import-name (seq-to-choose-from (index)))

else
format(t, " d> In export area of subsystem -s: producer = -s: name = -s-%",

index, name(parent-expr(seq-to-choose-from(index))),
producer(seq-to-choose-from(index)),
export-name ( seq-to-choose-from(index)))

read-input C)

% ------------------------------------------------------------------------
% ------------------------------------------------------------------------
X ACCESSING INPORT/EXPORT AREAS -- Used during behavior simulation (execution)

% ------------------------------------------------------------------------
% ------------------------------------------------------------------------

U Get-Import -- returns the value of an external data item.
%Y. Given an id-name and consumer, function finds the import-obj associated
U with that id. If the source attribute is defined (we have already
U used this id before and know where to get the data), can go directly
U to right subsystem's export-area and return the value. If not,
U (we haven't used this id yet), must try to find an export-obj with
X. the same id in another subsystem. If there's only one subsystem
U with that id in its export-area, that's the one to use: return its
U value and set the import-obj source to that subsystem name. If there
X, are more than one, prompt the user to specify which subsystem to use as
U the source. Set the source to that subsystem/object (so user doesn't have
U to be prompted again) and return the appropriate value.
U NOTE: changes when source was made a set: if the set is empty (have not
U yet tried to access this data), find all possible sources. Prompt the

X user to select one of the possible sources or "arbitrary source". If

D-18



Y.7. a particular source was selected, source has only that entry. If
U "arbitrary" was chosen, source contains all the possible choices. In
%% either case, select an arbitrary member of the source set.

function get-import (id-name symbol,
subsystem subsystem-obj,
consumer-obj : primitive-obj) : any-type =

let (import : import-obj =
arb({import I (import: import-obj) import-obj (import) &

import in import-area(subsystem) &
import-nameC(import) id-name
& consumer(import) = name(consumer-obj)}))

if undefined?(import) then
%Y. Oops! This shouldn't happen. If it does, dm and code for primitive
U,' object must be checked to ensure compatibility WRT input-data...

format(t, "A run-time error has occurred. There is no import-obj for s-',",
id-name);

format(t, " which is used by -s in subsystem -s-%", name(consumer-obj),
name(subsystem));

format(t, "Please contact the software engineer-%");
undefined

else
if "empty(source(import)) then

%% We know which subsystem has this info;
%%7' go directly to the right one

let (s : source-obj =
arb(source(import))) % if there is only one source specified,

%. automatically gets the correct one
let (source-sub : subsystem-obj =

find-object( 'subsystem-obj, source-subsystem(s)))
let (source-export : export-obj =

arb({source-export I (source-export:export-obj)
export-obj (source-export) &
source-export in export-area(source-sub) a
export-name(source-export) = source-name(s) &
producer(source-export) = source-object(s)}))

(i2 undefined? (value (source-export)) then
format(t, "The export item corresponding to -s which is used by-V",

id-name);
format(t, " -s in subsystem -s has not yet been set.-%",

name(consumer-obj), name(subsystem))

value(source-export)

else
U., We don't yet know which subsystem will provide this info.
.Y7. So, there must have been some error in our preprocessing...

format(t, "A run-time error has occurred. There is no source for -s%1",

D-19



id-name);
format(t, " which is used by -s in subsystem -s-%", name(consumer-obj),

name(subsystem));
format(t, "Please contact the software engineer.y");

undefined

% ----------------------------------------------------------------------------------------------------

U. Set-Export -- set the value attribute of the export-obj
%T whose export-name attribute = id-name to val. This makes val

UX available to external subsystems.

function set-export (subsystem subsystem-obj,
source-obj* primitive-obj,
id-name symbol,
val.: any-type) =

let (export : export-obj =
arb({export I (export:export-obj) export-obj (export) &

export in export-area(subsystem) &
export-name(export) = id-name &
producer(export) = name(source-obj)}))

if undefined?(export) then
UY Oops! This shouldn't happen. If it does, dm and code for primitive
=X object must be checked to ensure compatibility WIT output-data...

format(t,
"You have tried to export a value which is not in object's output-data-%")

else
set-attrs(export, 'value, val)

% -----------------------------------------------------------------------

% -----------------------------------------------------------------------
%YX Get-Id-Type-For-Conditional -- If id-source for id has not been specified,
7.7. return ERROR to caller (to avoid unusual run-time error; should always
UX have a source by this time); otherwise, return the data type of the data to
YX be used as source of id. Called by eval-expr during semantic checking
Y. of boolean expressions.

function get-id-type-for-conditional ( id : identifier ) symbol =

if undefined?(id-source(id)) then
format(t, "Id -s has not been associated with an import/export-objX%",

id-name(id));
'ERRLOR

elseif import-obj(id-source(id)) then
import-type-data (id-source (id))

else
export-type-data (id-source (id))

D-20



Y.X Get-Id-Value-for-Conditional -- Retrieves the current value of id.
%% If id-source is an import-obj, must used get-import to obtain the value
X.7 (since the value isn't stored in an import-obj). If id-source is an

UX export-obj, get the value directly for it. Id-source should already

%% be defined...

function get-id-value-for-conditional ( id : identifier ) : any-type =

if undefined?(id-source(id)) then % something strange is going on

'ERROR

elseif import-obj (id-source(id)) then

get-import(id-name(id), parent-expr(id-source(id)),

find-object( 'primitive-obj, consumer(id-source(id))))

else

value (id-source (id))

% -----------------------------------------------------------------------------------------------------

% ----------------------------------------------------------------------------
ye-----------------------------------------------------------------------------------------------------

X% GENERAL UTILITIES
% -----------------------------------------------------------------------------
% ----------------------------------------------------------------------------

%%. get-input-output-variable -- returns the set of input-data or output-data
UY associated with that object type. Each domain object class has two
UX variables: objectclass-INPUT-DATA and objectclass-OUTPUT-DATA which
%Y. define the input-data and output-data associated with domain objects
%Y. of that type. This function constructs the correct variable name
XXY (by concatenating object class (of input parameter, obj), -, and
%% INPUT-DATA or OUTPUT-DATA (from input parameter, in-or-out)).
XX7 It then calls the lisp function, symbol-value, using the constructed
%% variable name, and returns that value.
UX NOTE: Input-data and output-data for exach object class NUST follow this
%% naming convention.

function get-input-output-variable(obj :primitive-obj,
in-or-out :string) : set(any-type)=

let( oc : re::binding = instance-of(obj))
let~var-name : symbol =

string-to-symbol (concat (symbol-to-string (name (oc)) , 11-', in-or-out), "lru"l))

symbol-value (var-name)
ye----------------------------------------------------------------------------

% ----------------------------------------------------------------------------
%YX Get-Source -- Used by Determine-Import-Sources. First, sets the import's
UX source to the null set (either it is null to start or the user wants to
XXY wipe out what is already there. Then find all export-objs within the

D-21



XX same application definition (spec-obj) which can provide the kind of
%% data needed by import. If only one export-obj can be the source, use it.

%% Otherwise, present the possible choices to the user who must specify
.7 which one he wants to use. Called by Determine-Input-Sources.

function get-source(import : import-obj) =

set-attrs(import, 'source, {}); % wipe out whatever was there

let (export-seq : seq(export-obj) =
[source-export I (source-export:export-obj)

export-obj (source-export) &
export-category(source-export) = import-category(import) &
up-to-root(source-export) = up-to-root(import) &
subsystem-obj(parent-expr((source-export)))])

% added this last one so it won't find
% the import/export-objs which are in the variables
% (e.g. THING-OBJ-IIPUT)

if size(export-seq) < I then
U Error - should not occur at this time;
XX Supposed to catch this error during semantic checks;
UX this is called only if there are no errors...

format(t, "Error: No subsystem provides -s type of data-%",
symbol-to-string(import-category(import)));

undefined

elseif size(export-seq) = I then

format(debug-on,
"There is only one possible source for this info; use it-V);

set-import-source(import, {export-seq(1)})

else
XX More than one subsystem provides this data-item.
UX Prompt the user to select the one to be used...
XX and store its name for future reference
U OR if user doesn't care where data comes from, store
U all possible choices...

let (user-choice : integer = prompt-for-source(import, export-seq))

(if user-choice <= size(export-seq) then
Y% User has selected a particular source for this data;
VX set source (import) to this selected source only...

set-import-source(import, {export-seq(user-choice)})
else

Y% User has indicated he doesn't care where import data
%% comes from; set source(import) to all the possible sources

set-import-source(import, seq-to-set(export-seq))
)

D-22



D.5 Semantic-Checks

! in-package("RU")
! in-grammar('user)

' File name: semantic-checks.re

% The rules that invoke the individual tests on the subsystem assume that the
X subsystem is the current object (not the Epec object). The main rules
YM (Check-before-executing and reset-fatal-error) can be executed from the
%* spec-obj

% -------------------------------------------------------------------------
U Check-Semantics -- applied on the current node, a spec-obj

rule Check-Semantics Ux : object)
true -- >

Perform-Semantic-Checks (X)

% -----------------------------------------------------------------------------------------------------

Y.X. Perform-Semantic-Checks -- enumerates over all the kids of the spec-obj, x,
XX calling the appropriate check function for the kind of object encountered
%% (application or subsystem).
XX There are currently no semantic checks for primitive objects.

function Perform-Semantic-Checks (X : object) =
X X is root of abstract syntax tree, spec-obj

FATAL-ERROR <- false; % Reset it so only new errors will be flagged
Semantic-Checks-Performed <- true, % So we know these checks actually were done

let (components seq(symbol) = [], % used for checking unused components
application-objs seq(application-obj) %) ' used for checking too many/too few

% applications

(enumerate obj over kids(x) do

if application-obj(obj) then
application-objs <- append(application-objs, obj);
components <- concat(components, [name(obj)],

set-to-seq(seq-to-set(application-components(obj))));
check-application(obj)

elseif subsystem-obj(obj) then

D-23



components <- concat(components,
set-to-seq(seq-to-set(controllees(obj))));

% NOTE: set-to-seq(seq-to-set) is necessary to ensure there is only 1

% occurrence of each controllee. Making controllees a set to start with
% did not assure only unique controllee names

build-import-export-area(obj); % build framework for im/ex area - "preprocessing"
determine-sources-for-conditionals(obj); % more "preprocessing"
check-subsystem(obj)

%V. low, all import/export areas in the entire application have been built.
%% Can check that all imports have a corresponding export

(enumerate obj over kids(x) do
if subsystem-obj(obj) then

Check-for-Exports-Corresponding-to-Imports(obj)

U. Do we have one and only one application-obj?
(if size(application-objs) = 0 then

Report-Error("There is no application executive in your specification", X)
else

if size(application-objs) > I then
Report-Error("There are too many application executives in your specification", X)

Y'/. Is a specific primitive object instance used in more than one subsystem?
(let (dup-seq : seq(symbol) = find-all-dups (components))
enumerate y over dup-seq do

if primitive-obj(find-object('component-obj, y)) then
Report-Error(concat("Object ", symbol-to-string(y),

"appears in more than one subsystem"), X)

%V. Are there any unused components in the spec-obj?
(let (unused-components : set(component-obj) =

{z 1 (z:component-obj) component-obj(z) k name(z) -in components &
up-to-root(z) = X})

enumerate y over unused-components do
Report-Warning(concat("Object ", symbol-to-string-name(y)),

" is not used in the proposed application"), X)

%% If no errors so far, determine sources for all imports (part of "preprocessing")
if 'FATAL-ERROR then

enumerate component over kids(x) do
if subsystem-obj(component) then

determine-import-sources(component)
%-------------------------------------------------------------
% , - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

. Check-Application -- ensures application constraints are met, including:

D-24



.. Check-If-Application-Components-Exist: (ERROR)
Y.Y Self-explanatory.
U Check-for-Direct-Use-of-Primitives: (ERROR)
%Y. Ensures no primitive objects are included in the application directly
%% (i.e., without an intervening subsystem)
M. Check-Application-Update-Procedure -- Ensures that operands are part of the
U application (i.e., included in application-components) and also includes
I= the following check:
%% Check-For-Legal-Call-Statement: (ERROR)
%% Ensures that only call statements are included in application-update
%Y. (no If or While) and that only implemented subsystem interfaces are
%% used (now, that's only update!).

.. Check-For-Dupes-in-Application-Components: (WARNING)
M. Checks that each component appears only once. If not, this may
%% indicate a specification error (especially a typo), although the
XY. application can be executed.
%% Check-For-Unused-Components-in-Update: (WARNING)
Y. Checks for unused components in the update procedure (i.e. components
XX listed in application-components but not used as operands in the update
YY procedure). Again, this could indicate a specification error...

function check-application (application : application-obj) =

Check-If-Application-Components-Exist (application);
Check-for-Direct-Use-of-Primitives (application);
Check-Application-Update-Procedure (application);
Check-For-Dupes-in-Application-Components (application);
Check-For-Unused-Subsystems-in-Update (application)

X------------------------------------------------------------
X------------------------------------------------------------
U Check-If-Application-Components-Exist -- Ensures all application-components
UX exist that should exist. If some do not exist, are they to be initialized
U by the application update procedure? If so, that's OK.
UX Generates an ERROR...

function check-if-application-components-exist (application : application-obj) =

enumerate component over application-components(application) do

if "object-exists(component) then % no such subsystem with that name
Report-Error

(concat("Object ", symbol-to-string(component), " does not exist"),
application)

%------------------------------------------------------------
%------------------------------------------------------------
XX Check-for-Direct-Use-of-Primitives -- Ensures that no primitive objects are
U used directly by the application (application should deal only with subsystems).

function Check-for-Direct-Use-of-Primitives (application : application-obj) =

enumerate x over application-components(application) do

D-25



if primitive-obj(find-object('component-obj, x)) then
Report-Error(concat(symbol-to-string(x),

" is a primitive; only subsystems can be used in application"),
application)

% ----------------------------------------------------------------------

7% Check-Application-Update-Procedure -- Ensures that all statements in

XX application update procedure are legal. Includes:

function check-application-update-procedure (application : application-obj) =

if size(application-update(application)) = 0 then
Report-Error("No statements in application update procedure", application)

else
enumerato stmt over application-update(application) do

if if--stmt-obj(stmt) then
Report-Error("If statements are not allowed in application update procedure",

application)
elseif while-stmt-obj(stmt) then

Report-Error("While statements are not allowed in application update procedure",
application)

else % have a call statement
check-if-operand-in-application (application, stmt);
check-for-legal-call-stmt (stmt)

XX Check-If-Operand-in-Application -- Operand of call statement must be included
I.Y. in application's application-components.

function check-if-operand-in-application (application application-obj,
stmt statement-obj)

if operand(stmt) -in application-components(application) then
Report-Error (concat ("Object ", symbol-to-string(operand(stmt)),

" is not part of the application"), application)

%Y. Check-For-Legal-Call-Stmt --
XX Ensures that only subsystem procedural interfaces (update, destroy,
%Y. initialize, configure and stabilize (the last four are not yet implemented,
XX though)) are used in application update procedure.
XU Generates an ERROR...

function check-for-legal-call-stmt (stmt : statement-obj) =

if configure-call-obj(stmt) then
Report-Error ("Configure not yet implemented ", stmt)

elseif stabilize-call-obj(stmt) then
Report-Error ("Stabilize not yet implemented ", stmt)

elseif initialize-call-obj(stmt) then
Report-Error ("Initialize not yet implemented ", stmt)

elseif destroy-call-obj(stmt) then
Report-Error ("Destroy not yet implemented ", stmt)

D-26



elseif "update-call-obj(stmt) then
Report-Error ("Illegal operation in an application update procedure", strmt)

%'/. Check-for-Dupes-in-Application-Components -- Are any subsystems listed more
%% than once in application-components? If so, user may have made an error
%% (most likely a typo). Generates a Warning...

function check-for-dupes-in-application-components (application : application-obj) =

let (dup-subsystems : seq(symbol) = find-all-dups (application-components(application)))

if size(dup-subsystems) -= 0 then % Have dupes within components of single application
enumerate dupe over dup-subsystems do

Report-Warning(concat("Subsystem ", symbol-to-string(dupe),
" appears more than once in the application"), application)

%Y. Check-For-Unused-Subsystems-in-Update -- Are any subsystem not used in the
%% application update procedure? If any are unused, it could indicate an error
%Y.% by the user (either a typo or perhaps he forgot to include an update
XX statement). Generates a Warning...

function Check-For-Unused-Subsystems-in-Update (application : application-obj) =

let (subsystems-unused : set(symbol) = seq-to-set(application-components(application)))

(enumerate stmt over application-update(application) do
subsystems-unused <- find-unused-components(subsystems-unused, application, stit)

if "empty(subsystems-unused) then
enumerate unused over subsystems-unused do

Report-Warning (concat ("Subsystem ", symbol-to-string(unused),
" not used in application update"), application)

%V----------------------------------------------------------------------

% Check-Subsystem -- ensures subsystem OCU constraints are met.
V.Y. Check-If-Controllees-Exist: (ERROR)
Y. Ensures all controllees exist.
YV. Check-Subsystem-Update-Procedure -- includes the following checks
U Check-If-Statement: (ERROR)
UV Ensures that if-cond is valid. Then checks that all statements
M. in then and else clauses are OK
YX. Check-While-Statement: (ERROR)
YY Ensures that if-cond is valid. Then checks that all statements
U in then and else clauses are OK
M. Check-If-Operand-in-Subsystem: (ERROR)
XX Ensures the operand of call statement is part of the
XV. current subsystem (i.e., it appears in "controllees")

D-27



Check-SetFunction-Stmt: (ERROR)
XV Ensures function-name is valid for operand; ensures atit

coefficients are valid for operand.
I/M, Check-SetState-Stmt: (ERROR)
U% Ensures state names are valid for operand and the new value
14Y provided for them is of the appropriate type.
U% Check-For-Dupes-in-Subsystem: (WARNING)
Y.Y Checks that each controllee name appears only once. If not, this may
Y.% indicate a specification error (especially a typo), although the application
Y.1/. can be executed.
U% Check-For-Unused-Components-in-Update: (WARNING)
Y.% Checks for unused components in the update procedure (i.e. components listed
V.Y. as controllees but not used as operands in the update procedure). Again,
Y.Y this could indicate a specification error...

function check-subsystem(subsystem : subsystem-obj) =

Check-If-Controllees-Exist(subsystem);
Check-Subsystem-Update-Procedure(subsystem);
Check-For-Dupes-in-Subsystem(subsystem);
Check-For-Unused-Components-in-Update (subsystem)

%.--------------------------------------------------------------------------------
%.------------------------------------------------------------
U. Check-If-Controllees-Exist --
Y,%. Ensures all controllees exist that should exist. If some do not exist,
•%7 are they to be created by the subsystem? If so, that's OK.
U% Generates an ERROR...

function Check-If-Controllees-Exist (subsystem: subsystem-obj) =

enumerate ctrlee over Controllees(subsystem) do

if "object-exists(ctrlee) then e no such object with the given name
Report-Error(concat("Object ", symbol-to-string(ctrlee),

" does not exist"), subsystem)
%.------------------------------------------------------------
%.--------------------------------------------------------------------------------
%% Check-Subsystem-Update-Procedure -- Ensures that all statements in
U• subsystem update procedure are legal. Includes:

function check-subsystem-update-procedure (subsystem : subsystem-obj) =

if size(update(subsystem)) = 0 then
Report-Error("No statements in subsystem update procedure", subsystem)

else
enumerate stit over update(subsystem) do

check-statement(stmt)

%-------------------------------------------------------------
%'h Check-Statement -- checks a particular statement. It's a separate function
UV so it can be called within if and while statements.

D-28



function check-statement (stmt : statement-obj) =

if if-stmt-obj(stmt) then
check-if-statement(stmt)

elseif while-stmt-obj(stmt) then
check-while-statement(stmt)

else , have a call statement
check-if-operand-in-subsystem(stmt);
if setfunction-call-obj(stmt) then

check-setfunction-stmt(stmt)
elseif setstate-call-obj(stmt) then

check-setstate-stmt(stmt)
elseif "update-call-obj(stmt) then

Report-Error("Operation is not yet implemented", stmt)

% Check-If-Operand-in-Subsystem -- Operand of call statement must be included
77 in subsystem's controllees.

function check-if-operand-in-subsystem (stmt statement-obj) =

let (subsystem : subsystem-obj =

least-ancestor-of-class(stmt, 'subsystem-obj))

if operand(stmt) -in controllees(subsystem) then
Report-Error (concat ("Object ", symbol-to-string(operand(stmt)),

" is not part of the subsystem"), subsystem)
%-------------------------------------------------------------
Y.% Check-If-Statement -- Ensure if condition is valid. Then, ensure all
U statements in then and else clauses are OK.

function check-if-statement (stmt : statement-obj) =

(if get-expression-type(if-cond(stmt)) -= 'BOOLEAN then
Report-Error("Invalid condition in if statement ", stmt)

(enumerate stmti over then-stmts(stmt) do
check-statement(stmt1)

enumerate stmt2 over else-stmts(stmt) do
check-statement(stmt2)

U Check-While-Statement -- Ensure while condition is valid. Then, ensure all
%Y statements in while loop are OK.

function check-while-statement (stmt : statement-obj) =

(if get-expression-type(while-cond(stmt)) -= 'BOOLEAN then
Report-Error("Invalid condition in while statement ", stmt)

D-29



enumerate stmtl over while-stats(stat) do
check-statement (stati)

X-------------------------------------------------------------
XX Check-SetFunction-Stat -- Ensures that function name specified is valid for
XX the statement's operand. Then, ensures that the coefficients specified
XX (if any) are valid for that operand.

function Check-SetFunction-Stat (stat statement-obj) =

if object-existsCoperandCstmt)) then Xchecks meaningful only if operand exists
check-for-valid-function-name (stat);
check-for-valid-coefficients (stat)

function Check-for-Valid-Function-lame (stat statement-obj) =

XX Thanks to Nary Anne Randour for the essence of this code

let ( oc re::binding instance-of(find-object('priuitive-obj, operandCstmt))))
let (func-name symbol =

string-to-symbol (concat(syabol-to-string(name(oc)), "-",

symbol-to-string(function-name (stat))), "run))
let (valid-function set(object) =

{ x I Cx:object) re::vfunction-opCx) & size(re::formals(x)) 2 &
name(re: :ref-to(re: :data-typeCre: :formalsCx) (2)))) naineCoc) &
name(x) = func-name})

Y. to be valid function, must be a function, must have two parameters,
X the type of the second parameter must be an object of the same class
X as the statement's operand and it must be named func-name (which is
X constructed from operand object class and specified function name)

if empty(valid-function) then
Report-Error("Invalid junction name in setfunction stat", stat)

function Check-for-Valid-Coefficients (stat stateaent-obj)

let (obj primitive-obj = find-object('primitive-obj, operandCstmt)))
let (obj-coefficients set(name-value-obj) =

get-coaputed-attr-value(obj, 'coefficients))
XJIOTE: get-computed-attr-value function is in "execute" file

enumerate coef over coefficients(stmt) do

let (c name-value-obj =

arb ({c I Cc name-value-obj) name-value-obj Cc) &
c in obj-coefficients & name-value-name(c) = name-value-name(coef)}))

X to be valid coefficient, there must be a name-value-obj in the operand's
X coefficient mapping whose name-value-name = coefficient to be set

if undefined'(c) then
Report-Error(concat("Illegal coefficient ",

D-30



symbol-to-string(name-value-name(coef))), stmt)

XX Check-SetState-Stmt -- Ensures that state names are valid for operand and
YM if so, ensures that new value is compatible with the type of data expected

UX for that state attribute.

function Check-Setstate-stnit (stat :statement-obj)

if obj ect-exists (operand (stmt) ) then %checks meaningful only if operand exists

let (obj primitive-obj = find-object('primitive-obj, operand~stmt)))
let ( oc re::binding =instance-of(find-object('primitive-obj, operand~stmt))))

enumerate attr-to-set over state-changes (stmt) do
let (attribute-name :symbol =

string-to-symbol C concat (syinbol-to-string(name (oc)), 11-11
symbol-to-string~name-value-name~attr-to-set))), llrul))

if -(ex (attr) (attr in class-attributes~instance-of(obj), true)
name(attr) = attribute-name)) then

Report-Error("Invalid state name in setstate stat", stmt)

enumerate attr-to-set over state-chantges(stmt) do
let (attribute-name :symbol =

string-to-symbol (concat (symbol-to-string(name(oc)), 0111p
symbol-to-string(name-value-name(attr-to-set))), llrull))

let (attr :re::binding =

arb({ x I (x:re::binding) re::binding(x)
x in class-attributes(instance-of(obj), true) &
name(x) = attribute-name}))

if undefined?(attr) then
Report-Error(concat ("In~valid state name C",

syznbol-to-string(naine-va:Lue-name (attr-to-set)),
") in setstate stat"), stmt)

else

UX Now ensure new value is of the correct type for the attribute specified

let (legal-type :symbol = get-attribute-type(attr),
valid-booleans :set(symbol) = {'t, If, IT. 'F})

format(t, I"legal-type = -s%", legal-type);
if legal-type = 'integer and -integerp(name-value-value(attr-to-set)) then

Report-Error(concat ("Value provided for "1,

symbol-to-string(name-value-name(attr-to-set)),
is not integer "1), attr-to-set)

elseif legal-type = 'real and -floatp(name-value-value(attr-to-set)) then
Report-Error(concat ("Value provided for ",

symbol-to-string(name-value-name (attr-to-set)),
" is not real "), attr-to-set)

elseif legal-type = 'boolean then

D-31



(if name-value-value(attr-to-set) -in valid-booleans then
Report-Error(concat("Value provided for ",

symbol-to-string(name-value-name(attr-to-set)),
" is not boolean "), attr-to-set)

else

set-attrs(attr-to-set, 'name-value-value,
convert-to-boolean(name-value-value(attr-to-set)))

)
elseif legal-type = 'string and -stringp(name-value-value(attr-to-set)) then

Report-Error(concat("Value provided for ",
symbol-to-string(name-value-name(attr-to-set)),
"is not string "), attr-to-set)

elseif legal-type = 'symbol and "symbolp(name-value-value(attr-to-set)) then
Report-Error(concat ("Value provided for ",

symbol-to-string(name-value-name(attr-to-set)),
"is not symbol "), attr-to-set)

% ----------------------------------------------------------------------
% ----------------------------------------------------------------------
XX Check-For-Exports-Corresponding-to-Imports -- Ensures that for each import-obj
UX in the subsystem's import-area, an export-obj exists in some subsystem's
%Y export area that corresponds to it (i.e., that can serve as the source of the
UX external data needed). Generates an ERROR...
UX Note: the import-obj and corresponding export-obj can be part of the same
UX subsystem. All subsystems whose export areas are considered for
UX "correspondence" must be part of the same spec-obj (in case there is more than
UX one in the object base)

function Check-For-Exports-Corresponding-to-Imports (subsystem : subsystem-obj) -

enumerate import over import-area(subsystem) do
let (exports : set(export-obj) =

{export I (export:export-obj) export-obj(export)
export-category(export) = import-category(import) *
up-to-root (export) = up-to-root (import)})

if empty(exports) then
Report-Error (concat ("1o subsystem produces data of category ",

symbol-to-string(import-category(import)), " for object "

symbol-to-string(consumer(import))), subsystem)

%------------------------------------------------------------

XX Check-For-Dupes-in-Subsystem -- Are any controllees listed more than once in the
UX same subsystem? If so, user may have made an error (most likely a typo).
UX Generates a Warning...

D-32



function Check-For-Dupes-in-Subsystem (subsystem : subsystem-obj) =

let (dup-controllees : seq(symbol) = find-all-dups (controllees(subsystem)))

if size(dup-controllees) -= 0 then %. Have dupes within controllees of single subsystem
enumerate dupe over dup-controllees do

Report-Warning(concat("Object ", symbol-to-string(dupe),
" appears more than once in subsystem"), subsystem)

V.7. Check-For-Unused-Components-in-Update -- Are any controllees not used in the
%. subsystem update procedure? If any are unused, it could indicate an error

Y.7. by the user (either a typo or perhaps he forgot to include an update
V.%. statement). Generates a Warning...

function Check-For-Unused-Components-in-Update (subsystem : subsystem-obj)

let (unused-components : set(symbol) = seq-to-set(controllees(subsystem)))

(enumerate stit over update(subsystem) do

unused-components <- find-unused-components(unused-components, subsystem, stmnt)

if "empty(unused-components) then
enumerate unused over unused-components do

Report-Warning (concat ("Component ", symbol-to-string(unused),
" not used in subsystem update procedure"), subsystem)

% ----------------------------------------------------------------------
V.----------------------------------------------------------------------
%.% UTILITIES -- The following functions perform some useful task for the various
U. semantic checks...
%-------------------------------------------------------------
%-------------------------------------------------------------

%-------------------------------------------------------------
%.. Reset-FATAL-ERROR -- FATAL-ERROR is global variable in DM.
U. IF FATAL-ERROR is true, a semantic check has found an error
U. which must be corrected before the subsystem can be executed.
%.. For test purposes, it is often useful to be able to ignore

U. these errors by resetting FATAL-ERROR

rule Reset-FATAL-ERROR (x: object)

FATAL-ERROR -- >
FATAL-ERROR <- false

%V----------------------------------------------------------------------

V.----------------------------------------------------------------------
X.. Report-Error -- used by all semantic checks to display the
U. error to the user's screen. Message is the text you wish
U. displayed and Obj is the object which caused the error

D-33



function Report-Error (Message: string, Obj: object) =

format(t, "'%ERROR -- s -%", Message);
format(t, "Object: -\\pp\\ -%-%", Obj);
FATkL-ERROR <- true

% ----------------------------------------------------------------------

XX Report-Warning -- used by some semantic checks to display a
UX warning to the user's screen. Message is the text you wish
%% displayed and Obj is the object which caused the error
UX Note: A warning indicates something may be wrong with the
%% specification - user must review to ensure it is written as

U% intended.

function Report-Warning (Message: string, Obj: object) =

format (t, "1.Warning -- -s -%", Message);
format(t, "Object: -\\pp\\ "%V%",Obj)

function Object-Exists (Obj-Name : symbol) : boolean =

-(empty( Iame-Of(Obj-Iame)))
% ----------------------------------------------------------------------

XX find-all-dups -- Given a sequence of any type, returns another sequence
UX which contains all ther.duplicates found in the original sequence.

UX Each duplicate appears only once in the returned sequence -- for example
UX find-all-dups on [1, 2, 3, 2, 4, 1, 1) returns ft, 2).
UX Thanks to Dave Zimmerman of Kestrel Institute for this code

junction find-all-dups (s: seq(any-type)): seq(any-type) =

let (var the-dups: seq(any-type) = )
s = [.., x, .. , y, .. 1
&xz y

-- > x in the-dupe;
the-dups

%------------------------------------------------------------
%------------------------------------------------------------
function find-unused-components (unused-components set(symbol),

obj : component-obj,
stat : statement-obj) : set(symbol)=

let (components-not-used : set(symbol) = unused-components)

(if call-obj(stmt) then
components-not-used <- components-not-used less operand(stmt)

elseif if-stmt-obj(stmt) then

D-34



enumerate stmti over then-stmts(stmt) do
components-not-used <- f ind-unus ed-component s(opnn -o-se, obj, stint1);

enumerate stmt2 over else-stmts (stint) do
components-not-used <- find-unused-componentscmoet-o-sd obj, stmt2)

else
enumerate stati over while-stmts(stmt) do

component s-not-us ed <- f ind-unused-component s(opnn -o-s , obj, stati)

components-not-used

%% Get-Attribute-Type -- returns (as a symbol) the data type of an attribute
UX based on its type in the domain model.
UY Thanks to Mary Anne Randour for this code!!

function get-attribute-type (attr :re: :binding) :symbol

let ( type-map :map~symbol, symbol)
f{I're::symbol-op ->'symbol,

're::real-op ->'real,

're::integer-op ->'integer,

're::boolean-op -> boolean,
're: :any-type-op ->'any-type }

let (its-type :object = re::range-type(re::data-type(attr)))

if re::class(its-type) = 're::binding-ref then
if defined?(re: :bindingname(its-type)) and-then

re: :bindingnaae(its-type) = 'string then
' string

else
'object

else
type-map(re::class(its-type))

%Y. Convert-to-Boolean -- transforms a symbol to boolean

function convert-to-boolean ( symbol-to-convert symbol) :boolean-

if symbol-to-convert = It or symbol-to-convert I T then
true

elseif symbol-to-convert = 'f or symbol-to-convert = 'F then
false

% ----------------------------------------------------------------------

D-35



D.6 Execute

1! in-package("RU")
!! in-grammar('user)

U File name: execute.re

%.---------------------------------------------------------------
%% Do-Execute -- Used to simulate execution of the entire application.
M. Current node is the spec-obj parsed in by user. Semantic checks
UX must have already been performed with no errors.

rule Do-Execute (X : object)
"fatal-error & semantic-checks-performed -- > Find-and-Execute-Application(X)

%---------------------------------------------------------------

%---------------------------------------------------------------
U Find-and-Execute-Application -- Finds the application-obj within the current
XX application (spec-obj) and calls Execute-Application to execute it.
XX NOTE: There is only one application-obj per application -
X.X semantic checks insure that.

function Find-and-Execute-Application (x : object) =

semantic-checks-performed <- false; % reset flag to force semantic-checks again

let (application : application-obj =
arb(Ca I (a:application-obj) application-obj(a) & parent-expr(a) = x}))

Execute-Application(application)

%---------------------------------------------------------------

% --------------------------------------------------------------------
XX Execute-Application -- Simulates execution of an application
Y. (given by the input parmeter, application) by enumerating
YX over the statements in the application update procedure.
XX As you can see, this is virtually identical to Execute-Subsystem.
XX However, we are currently using only the most simple application
U executive. In the future, the execution of applications and subsystems
XX may be vastly different.

function Execute-Application ( application : object) =

enumerate stmt over application-update(application) do
execute-statement(application, stmt)

%---------------------------------------------------------------

D-36



XX Execute-Subsystem -- Simulates execution of a subsystem
XX (given by the input parmeter, subsystem) by enumerating

U over the statements in the subsystem update procedure.

function Execute-Subsystem (subsystem : object) =

enumerate stmt over update(subsystem) do
execute-statement(subsystem, stmt)

% -------------------------------------------------------------------------

% --------------------------------------------------------------------------
XX Execute-Statement -- Given a statement from a subsystem update
X% procedure, calls the appropriate function to execute the
U statement.

function Execute-Statement (component object,
stmt statement-obj) =

if call-obj(stmt) then Do-Call-Stmt(component, stmt)
elseif if-stmt-obj(stmt) then Do-If-Stmt(component, stmt)
elseif while-stmt-obj(stmt) then Do-While-Stmt(component, stmt)
else

format(t, "RUN-TIME ERROR: trying to execute ");
format(t, "an invalid statement: -\\pp\\'%", component)

%---------------------------------------------------------------

XX Do-Call-Stmt -- Executes a Call statement. Finds the object
U referenced as the operand of the call statement. If that object
XX is a primitive-obj, call the correct function. If the operand is
XX another subsystem, recursively call Execute-Subsystem.
X% Call-stmts include everything but if and while statements...

function Do-Call-Stmt (control: object, stmt : statement-obj) =

let (obj : object = find-object('component-obj, operand(stmt)))

if defined?(obj) then
if primitive-obj(obj) then

if update-call-obj(stmt) then
% call the current update function name
% which is stored in object's update-function attribute

lisp: :funcall(get-computed-attr-value(obj, 'UPDATE-FUNCTION),
control, obj)

elseif SetFunction-call-obj(stmt) then
SetFunction(operand(stmt), function-name(stmt), coefficients(stmt))

elseif SetState-call-obj(stmt) then
SetState(operand(stmt), state-changes(stmt))

D-37



else
format(t, "Erroneous call statement for a primitive object -\\pp\\V%", stmt)

else % operand is a subsystem
execute-subsystem(obj)

else s The object referenced by the operand does not exist

format(t, "RUN-TIME ERROR: trying to execute a statement ');

format(t, "with a non-existent operand -\\pp\\'%", stint)

%/ Do-If-Stmt -- Executes an If statement. If if-cond evaluates to
%% true, call Execute-Statement for each of the statements in
U then-stmts. If if-cond is false, call Execute-Statement for
*/, each statement in else-stmts.

function Do-If-Stmt (control: object, stmt : statement-obj) =

if evaluate-boolean-expression(if-cond(stmt)) then
enumerate then-stmt over then-stmts(stmt) do

execute-statement(control, then-stmt)
else

enumerate else-stmt over else-stmts(stmt) do
execute-statement(control, else-stmt)

%% Do-While-Stmt -- As long as the while-cond evaluates to true,
%% call Execute-Statement for each statement in while-stmts.

function Do-While-Stmt (control: object, stmt : statement-obj) =

while evaluate-boolean-expression(while-cond(stmt)) do
enumerate while-stmt over uhile-stmts(stmt) do

execute-statement(control, while-stmt)

% SetFunction -- Only valid for primitive objects. Sets the object's update
%/ function name and any coefficients that are also provided. Coefficients
%% to be set must already exist.

function SetFunction (operand-name : symbol,
function-name : symbol,
coefficients-to-set : set(name-value-obj))

format(debug-on, "Calling SetFunction on primitive object -s-%", operand-name);

let (obj : primitive-obj = find-object('primitive-obj, operand-name))

D-38



let (oc : re::binding = instance-of(obj))
let (new-function-name symbol =

string-to-symbol(concat(symbol-to-string(name(oc)), "..,

symbol-to-string(function-name)), "ru"))
U The above "let" statements are needed to complete the full function name.
%% The object class must be appended to the function name provided by the user.

set-computed-attr (obj, 'update-function, new-function-name);

U Now set the coefficients...

let (obj-coefficients : set(name-value-obj)
get-computed-attr-value(obj, 'coefficients))

enumerate coef over coefficients-to-set do

let (c : name-value-obj =
arb ({c I (c : name-value-obj) name-value-obj(c) &

c in obj-coefficients & name-value-name(c) = name-value-name(coef)}))

if undefined?(c) then
format(t, "RUN-TIME ERROR: Coefficient -s does not exist-%",

name-value-name(coef))
else

obj-coefficients <- obj-coefficients less c;
obj-coefficients <- obj-coefficients with coef;
set-computed-attr (obj, 'coefficients, obj-coefficients)

% SetState -- Only valid for primitive objects. For each item in
.% state-changes-to-make (statement's state-changes), set the
VeX appropriate attribute of the operand to the given value.

function SetState (operand-name : symbol,
state-changes-to-make : set(name-value-obj)) =

let (obj : primitive-obj = find-object('primitive-obj, operand-name))

format(debug-on, "1YCalling SetState on primitive object -\\pp\\-%", obj);

enumerate state-change over state-changes-to-make do
set-computed-attr (obj, name-value-name(state-change),

name-value-value(state-change))

XX Utilities
% ----------------------------------------------------------------------------

D-39



%% The following functions are "utilities" used to retrieve data
7.% from an attribute whose name must be constructed and to store
Y. data to such an attribute.

/.% Get-Computed-Attr-Value -- appends partial-attr-name after

UX obj's object-class name (a symbol, which is obtained by using
UX REFINE's instance-of function) to determine attribute name.
XY. Use the REFINE function, retrieve-attribute, to get the current
UX value stored in that attribute and return it to the calling function.

function get-computed-attr-value (obj : primitive-obj,
partial-attr-name : symbol ) any-type =

let ( oc : re::binding = instance-of(obj))
let (var-name : symbol =

string-to-symbol (concat(symbol-to-string(name(oc)), "-.,

symbol-to-string(partial-attr-name)), "ru"))

retrieve-attribute (obj, find-attribute(var-name))

% -------------------------------------------------------------------------

% -------------------------------------------------------------------------
X.X. Set-Computed-Attr -- appends partial-attr-name after obj's
%% object-class name (a symbol, which is obtained by using
XX REFINE's instance-of function) to determine the attribute name
XX (var-name). Use REFINE's store-attribute function set the
XX• current value of attribute referenced by var-name to new-value.

function set-computed-attr (obj : primitive-obj.
partial-attr-name : symbol,
new-value : any-type) =

let( oc : re::binding = instance-of(obj))
let (var-name : symbol =

string-to-symbol (concat(symbol-to-string(name(oc)), "-",
symbol-to-string(partial-attr-name)), "ru"))

store-attribute(obj, find-attribute(var-name), new-value)

X---------------------------------------------------------------
%X Get-Coefficient-Value -- Used by primitive object update functions to
%% obtain the current value of the coefficient given by coefficient-name.

function get-coefficient-value (obj : primitive-obj,
coefficient-name : symbol) : any-type

let (obj-coefficients : set(name-value-obj) =

get-computed-attr-value(obj, 'coefficients))

D-40



let (c : name-value-obj
arb ({c I (c : name-value-obj) name-value-obj(c) &

c in obj-coefficients & name-value-name(c) = coefficient-name}))

name-value-value(c)

D. 7 Eval-Expr

!! in-package ("RU")

! in-grammar('user)

YY, file: eval-expr.re
V1. NOTE: This code was taken almost verbatim from our final project
%Y, in CSCE 663. This is another example of code reuse...

YY% Evaluate-Boolean-Expression -- returns the value of the
% given boolean expression. If it's a boolean literal, return
% its value; if an identifier, retrieve its value (identifiers
%, are linked to an import-obj or export-obj as determined by the
%. application specialist); otherwise, evaluate argument1 and
% argument2 separately and perform the appropriate operation on
%, them.

function Evaluate-Boolean-Expression (X: Object) : Boolean =

format(debug-on, "in evaluate boolean exp, object = "\\pp\\ "%11, x);
if True-Literal(X) then

true

elseif False-Literal(X) then
false

elseif Identifier(X) then
Get-Id-Value-for-Conditional(X) %. function located in imports-exports

elseif Equal-ExpCX) then
let (Exp-Type : symbol = 'INTEGER)

(if Identifier(Argumentl(X)) then
Exp-Type <- Get-Id-Type-for-Conditional(Argumentil(X))

else e% must be an object
Exp-Type <- Get-Expression-Type (Argument 1(X))

(if Exp-Type = 'INTEGER then
Evaluate-Integer-Expression(ArgumentI(x)) =

Evaluate-Integer-Expression(Argument2(X))
elseif Exp-Type = 'BOOLEAN then

D-41



Evaluate-Boolean-Expression(Argumentl CX))
Evaluate-Doolean-Expression(Argument2(X))

elseif Exp-Type = 'STRING then
Evaluate-Strintg-ExpressionCArgiumenti CX))

Evaluate-String-ExpressionCArgument2(X))
else %. Exp-Type must be real
Evaluate-Real-Expression(Argumentl(X))

Evaluate-Real-Expression(Argwnent2(X))

elseif LT-Exp(X) then
let (Exp-Type :symbol = 'INTEGER)
(if Identifier(ArgumentIMl) then
Exp-Type <- Get-Id-Type-f or-Conditional (Argument I(X)

else %. must be an object
Exp-Type <- Get-Expression-Type(Argumentl CX))

(if Exp-Type = 'INTEGER then
Evaluate-Integer-Expression(Argumenti CX)) <

Evaluate-Integer-Expression(hrguznent2 CX))
elseif Exp-Type = 'STRING then
Evaluate-String-ExpressionCArgument 1(X)) <

Evaluate-String-Expression(Arguznent2 CX))
else %. Exp-Type must be real
Evaluate-Real-Expression (Argument 1(x)) <

Evaluate-Real-Expression(Arguinent2(X))

elseif LTE-Exp(X) then
let (Exp-Type :symbol = 'INTEGER)
(if Identifier(Arguinenti(X)) then

Exp-Type <- Get-Id-Type-for-Conditional (Argument 1(X))
else %. must be an object
Exp-Type <- Get-Expression-Type (Argumen~t 1 X))

(if Exp-Type = 'INTEGER then
Evaluate-Integer-Expression(Argumentl CX)) <=

Evaluate-Integer-Expression(Argument2 CI))
e~b.seif Exp-Type = 'STRING then
Evaluate-String-ExpressionCArgument 1(X)) <

Evaluate-String-ExpressionCArgument2 CX))
else % Exp-Type must be real
Evaluate-Real-Expression(Argumenti(X)) <=

Evaluate-Real-ExpressionCArgument2(X))

elseif GT-Exp(X) then
let (Exp-Type :symbol = 'INTEGER)

(if Identifier(Argumentl(X)) then
Exp-Type <- Get-Id-Type-for-Conditional (Argument 1 X))

else %. must be an object
Exp-Type <- Get-Expreasion-Type(Argumentl CX))

D-42



(if Exp-Type ='INTEGER then
Evaluate-Integer-Expression(Argumentl CX)) >

Evaluate-Integer-Expression(Argument2 CX))
elseif Exp-Type = 'STRING then
Evaluate-String-ExpressionCArgumen~ti X)) <

Evaluate-String-Expression(Argument2 CX))
else % Exp-Type must be real
Evaluate-Real-Expression(Argumenti CX)) >

Evaluate-Real-ExpressionCArgument2 CX))

elseif GTE-ExpCX) then
let CExp-Type :symbol = 'INTEGER)
(if Identifier(Argumenti(X) then

Exp-Type <- Get-Id-Type-for-Conditional CArgument 1(X))
else %. must be an object

Exp-Type <- Get-Expression-TypeCArgumenti CX))

(if Exp-Type = 'INTEGER then
Evaluate-Integer-Expression(hrgumentl (X)) >=

Evaluate-Integer-Expression(Argument2 CX))
elseif Exp-Type ='STRING then
Evaluate-String--Expression~krgumentl CX)) <

Evaluate-String-Expression(Argument2(X))
else % Exp-Type must be real
Evaluate-Real-Expression(Argumentl(X)) >=

Evaluate-Real-Expression(Argument2 CX))

elseif And-Exp(X) then
Evaluate-Boolean-Expression(ArgumentiCX))

Evaluate-Boolean-Expression(krguznent2 CX))

elseif Or-ExpCX) then
Evaluat e-Boolean-Express ion (Argument I M) or

Evaluate-Boolean-ExpressionCArgument2(I))

elseif Iot-ExpCX then
not CEvaluate-Boolean-Expression(Argwnent CX)))

% -------------------------------------------------------------------

%% Evaluate-Int eger-Express ion -- returns the value of the
%. given integer expression. If it's a literal, return

% its value; if an identifier, retrieve its value (identifiers
% are linked to an import-obj or export-obj as determined by the

% application specialist); otherwise, evaluate argumenti and
%. argument2 separately and perform the appropriate operation on
% them.

D-43



function Evaluate-Integer-Expression (XI Expression) :integer

format (debug-on, "in evaluate integer exp, object = -\\pp\\ -%'. x);

if Integer-LiteralMl then
Int-Value (I

elseif Identifier(X then
Get-Id-Value-for-Conditional(X) %. function located in imports-exports

elseif add-exp(X) then
CEvaiuate-Integer-ExpressionCkrgumentl CI)) +
Evaluate-Integer-Expressiorn~irgument2 CX)))

elseif Subtract-Exp(X) then
Evaluate-Integer-Expression(Argumentl(X))-

Evaluate-Integer-ExpressionC(Arguznent2 (X))

elseif Multiply-Exp(X) then
Evaluate-Integer-ExpressionCArgwnentl(I))*

Evaluate-Integer-ExpressionCkrgument2(X))

elseif Divide-Exp(Z then
Evaluat e-Integer-Express ion (Argumzent IXW) div

Evaluate-Integer-ExpressionL(Argwnent2 CX))

elseif Mod-ExpCX) then
Evaluate-Integer-Express ion (ArgumentlIXM) mod

Evaluate-Integer-ExpressionC(Argument2 (X))

elseif Abs-ExpCI) then
let (Exp-Value integer = 0)

Exp-Value <-Evaluate-Integer-Expression (Argument 1(X);
if Exp-Value < 0 then

0 - Exp-Value
else

Exp-Value

elasif Negate-Exp(X then
let (Exp-Value :integer = 0)

Exp-Value <- Evaluate-Integer-Expression (Argument (W);
0 - Exp-Value

elseif Positive-Exp(X) then
let (Exp-Value :integer = 0)

Exp-Value <- Evaluate- Int eger-Expres sion CArguinent CX);
Exp-Value

% Refine does not handle exponentiation
elseif Exponential-Exp(X) then
let (Power :integer = 1,

D-44



Base integer = Evaluate-Integer-Expression(Argumentl ()),
Expon integer = Evaluate-Integer-Expression(Argument2(X)))

(enumerate index from 1 to Expon do
Power <- Power * Base );

Power

else
format (debug-on,

"Trying to evaluate a non-integer function as an integer %");

format(debug-on, "Object = -\\pp\\ "%', X);
0

%% Evaluate-String-Expression -- returns the value of the
% given string expression. If it's a literal, return
% its value; if an identifier, retrieve its value (identifiers
% are linked to an import-obj or export-obj as determined by the
% application specialist). This implementation currently allows

% no operations on strings within expressions.

function Evaluate-String-Expression (X: Object) : String =

format(debug-on, "in evaluate string exp, object = -\\pp\\ "%", x);

if String-LiteralM() then
String-Value(X)

else % X is an Identifier
Get-Id-Value-for-Conditional(X) % function located in imports-exports

%% Evaluate-Real-Expressioi. -- returns the value of the
% given real expression. If it's al iteral, return
% its value; if an identifier, retrieve its value (identifiers
% are linked to an import-obj or export-obj as determined by the
% application specialist); otherwise, evaluate argumentl and

% argument2 separately and perform the appropriate operation on

% them.

function Evaluate-Real-Expression (X: Object) : Real =

format(debug-on, "in evaluate real exp, object = -\\pp\\ -%", x);

if Real-Literal(X) then
Real-Value(X)

elseif Identifier(X) then
Get-Id-Value-for-Conditional(X) % function located in imports-exports

D-45



elseif add-exp(X) then
(Evaluate-Real-Expression(Argumentl (X)) +

Evaluate-Real-Express ion(Argument2(X)))

elseif Subtract-Exp(X) then
Evaluate-Real-Expression(argwment C(X)) -

Evaluate-Real-Expression (Argument2 (X))

elseif Multiply-Exp(X) then
Evaluate-Real-Expression(krgumentl (X)) *

Evaluate-Real-Expression(Argument2(X))

elseif Divide-Exp(X) then
Evaluate-Real-Expression(Argumenti (X)) /

Evaluate-Real-Expression(Argument2 (X))

elseif Iegate-Exp(X) then
let (Exp-Value : real = 0.0)

Exp-Value <- Evaluate-Real-Expression (Argument(X));
0.0 - Exp-Value

elseif Exponential-Exp(X) then
let (Power real = 1.0,

Base real = Evaluate-Real-Expression(Arguaentl(X)),
Expon integer = Evaluate-Integer-Expression(Argument2(X)))

(enumerate index from I to Expon do
Power <- Power * Base );

Power

elseif Abs-Exp(X) then
let (Exp-Value : real = 0.0)

Exp-Value <- Evaluate-Real-Expression (Argument1(X));
if Exp-Value < 0.0 then

0.0 - Exp-Value
else

Exp-Value

else
format(debug-on, "Trying to evaluate a non-real function as a real "");
format(debug-on, "Object = -\\pp\\ %"11, X);
0.0

% Utilities

function Report-Type-Nismatch-Error(X:object, left,right : symbol, Message: string) =

D-46



format(t, "Error -- Type Mismatch in expression -- -s %", Message);
format(t, "Object: -\\pp\\ "%", X);
format(t, "LHS type is -s "%", symbol-to-string(left));
if right -= 'nil then

format(t, "RHS type is -s -%'%", symbol-to-string(right))

XX Get-Expression-Type -- Returns the type of an expression (as a symbol).
UX If it finds a mismatch, it reports an error to the calling function.

function Get-Expression-Type (I : object) : symbol =

if Integer-Literal(I) then
'INTEGER

elseif Real-Literal(X) then
'REAL

elseif Boolean-Literal(X) then
'BOOLEAN

elseif String-Literal (1) then
'STRING

elseif IdentifierMl) then
Get-Id-Type-for-Conditional(X) % returns type of data to which

% id refers or ERROR if no id-source
X is specified

X for +, -, S, and /, both left and right sides must be the same type
elseif add-exp(X) or subtract-exp(X) or multiply-exp(X) or divide-exp(X) then
let (left-type : symbol = Get-Expression-Type(argumentl(x)),

rt-type : symbol = Get-Expression-Type(argument2(X)) )
if (left-type = rt-type) and (left-type "= 'ERROR and rt-type -= 'ERROR) then

left-type

else
Report-Type-Mismatch-Error(X,left-type, rt-type, "Types must match");
'ERROR % return error

% for mod, both must be integers
elseif mod-exp(X) then
let (left-type : symbol = Get-Expression-Type(argumentl(X)),

rt-type : symbol = Get-Expression-Type(argument2(X)) )
if left-type = 'INTEGER and rt-type = 'INTEGER and

(left-type -= 'ERROR and rt-type -= 'ERROR) then

left-type
else
Report-Type-Mismatch-Error(X,left-type. rt-type, "Both sides must be integers");
'ERROR X return error

X for *e, left side can be integer or real, right side must be integer.

D-47



elseif exponential-exp(X) then
let (left-type : symbol = Get-Expression-Type(argumentl(X)),

rt-type : symbol = Get-Expression-Type(argument2(X)) )
if (left-type = 'INTEGER or left-type = 'REAL) and rt-type = 'INTEGER

and (left-type -= 'ERROR and rt-type -= 'ERROR) then
left-type

else
Report-Type-Nismatch-Error(X,left-type, rt-type,

"Left side must be integer or real and right side must be an integer");
'ERROR % return error

% for abs, argument cannot be boolean

elseif Abs-Exp(X) then
let (Exp-Type symbol = Get-Expression-Type(Argument(X)) )

if Exp-Type "= 'BOOLEAN and Erp-Type -= 'STRING then
ERp-Type

else
Report-Type-Mismatch-Error(X, Exp-Type, 'nil,

"Type must not be boolean or string");
'ERROR % return error

% for unary minus, argument cannot be boolean
elseif Negate-Exp(I) then

let (Exp-Type symbol = Get-Expression-Type(Argument(X)) )
if Exp-Type "= 'BOOLEAN and Exp-Type -= 'STRING then

Exp-Type
else

Report-Type-Mismatch-Error(X, Exp-Type, 'nil,
"Type must not be boolean or string");

'ERROR % return error

% for unary plus, argument cannot be boolean
elseif Positive-EXp(M) then

let (Exp-Type symbol = Get-Expression-Type(Argument(X)) )
if Exp-Type -= 'BOOLEAN and Exp-Type -= 'STRING then

Exp-Type
else

Report-Type-Hismatch-Error(X, Exp-Type, 'nil,
"Type must not be boolean or string");

'ERROR % return error

% all relation operators, both arguments must be the same type
elseif Equal-Exp(X) or Not-Equal-Exp(Z) or LT-EXp(X) or LTE-Exp(X) or

GT-Exp(X) or GTE-Exp(X) then
let (left-type : symbol = Get-Expression-Type(argumentl(X)),

rt-type : symbol = Get-Expression-Type(argument2(X)) )
if left-type = rt-type and (left-type -= 'ERROR and rt-type -= 'ERROR) then

'BOOLEAN
else
Report-Type-Mismatch-Error(X,left-type, rt-type, "Types must match");

D-48



'ERROR %. return error

% for and, or both arguments must be booleans
elseif And-Exp(X) or Or-Exp(X) then
let (left-type : symbol = Get-Expression-Type(argumentl(X)),

rt-type : symbol = Get-Expression-Type(argument2(X)) )
if left-type = 'BOOLEAN and rt-type = 'BOOLEAN

and (left-type -= 'ERROR and rt-type -= 'ERROR) then
'BOOLEAN

else
Report-Type-Kismatch-Error(X,left-type, rt-type, "Both sides must be booleans");

'ERROR % return error

% for not, argument must be boolean
elseif Not-Exp(l) then

let (Exp-Type symbol = Get-Expression-Type(Argument(X)) )
if Exp-Type = 'BOOLEAN then

Exp-Type
else

Report-Type-Hismatch-Error(X, Exp-Type, 'nil, "Type must be boolean");
'ERROR % return error

else

format (debug-on.
"You shouldn't be calling this procedure with this object%!'/.");

format(debug-on, "Object = -\\pp\\ "%1", x)

D-49



Appendix E. Technology Base for the Logic Circuit Domain

This appendix contains the REFINE code for the logic circuit technology based used

in the logic circuit domain used to validate Architect. Each section defines a single primitive

object within the domain. Please note the conformance to the primitive object template

described in Appendix A.

E.1 And-Gate

!! in-package("RU")
H in-grammar('user)

%% File name: and-gate.re

var AND-GATE-OBJ : object-class subtype-of Primitive-Obj

var AND-GATE-OBJ-INPUT-DATA : set(import-obj) =

{set-attrs (make-object('import-obj),
)import-name, minl,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-object('import-obj),
'import-name, 'in2,
'import-category, 'signal,
'import-type-data, 'boolean)}

var AND-GATE-OBJ-OUTPUT-DATA : set(export-obj) =
{set-attrs (make-object (' export-obj),

'export-name, 'out 1,
'export-category, 'signal,
'export-type-data, 'boolean)}

var AND-GATE-OBJ-COEFFICIENTS : map(AND-GATE-OBJ, set(name-value-obj))
computed-using

AND-GATE-OBJ-COEFFICIENTSWx) {}

var AND-GATE-OBJ-UPDATE-FUNCTION : map(AND-GATE-OBJ, symbol)
computed-using

AID-GATE-OBJ-UPDATE-FUNCTION(x) = 'AND-GATE-OBJ-UPDATE1

% Other Attributes:
var AND-GATE-OBJ-DELAY : map(AND-GATE-OBJ, integer)

computed-using

E-1



AND-GATE-OBJ-DELAY(X) = 0

var AID-GATE-OBJ-MAIUFACTURER :mapCAND-GATE-OBJ, string)
computed-using
AND-GATE-OBJ-NANtJFACTURER(x) '

var AND-GATE-OBJ-MIL-SPEC? :map(AND-GATE-OBJ, boolean)
computed-using
AND-GATE-OBJ-MIL-SPECC) =nil

var AND-GATE-GB i-POWER-LEVEL map(AID-GATE-OBJ, real)
computed-using
AND-GATE-OBJ-POWER-LEVEL Cx) = 0.0

form Make-AND-GATE-Names-Unique
unique-naines-classC 'AND-GATE-OBJ, true)

function AND-GATE-OBJ-UPDATEI (subsystem : subsystem-obj,
and-gate :AND-GATE-OBJ)=

format~debug-on, 'AND-GATE-OBJ-UPDATE on -s-%1., name (and-gate));

let Cmin : boolean = get-importC'ini, subsystem, and-gate),
in2 : boolean = get-importC'in.2, subsystem, and-gate))

set-export~subsystem, and-gate, 'outi, ini & in2)
% -----------------------------------------------------
function AND-GATE-OBi-NEW-UPDATE (subsystem :subsystem-obj,

and-gate :AND-GATE-OBJ)

format Ct, "AND-GATE-OBJ-NEW-UPDATE on -s%", name~and-gate))

E.2 Or-Gate

in-package("RU")
in-grammar( 'user)

MV. File name: or-gate.re

var OR-GATE-OBJ : object-class subtype-of Primitive-Obj

var OR-GATE-OBJ-INPUT-DATA : set~import-obj)
{set-attrs (make-object C import-obj),

'import-name, 'mlI,
',motcaeoy 'signal,

E-2



'import-type-data, 'boolean),

set-attrs Cmake-object( 'import-obj),
'import-name, 'in2,
'import-category, 'signal,
'import-type-data, 'boolean)}

var DR-GATE-OBJ-OUTPUT-DATA :set Cexport-obj)
{set-attrs Cmake-object('export-obj),

'export-name, 'outi,
'export-category, 'signal,
'export-type-data, 'boolean) }

var OR-GATE-OBJ-COEFFICIENTS :mapCOR-GATE-OBJ, set(name-value-obj))
computed-using

OR-GATE-OBJ-COEFFICIENTS Cx) {

var OPR-GATE-OBJ-UPDATE-FUNCTION :map(OR-GATE-OBJ, symbol)
computed-using

OR-GATE-OBJ-UPDATE-FUNCTION~x) = 'OR-GATE-OBJ-UPDATEi

%h Other Attributes:
var OR-GATE-OBJ-DELAY : mapCOR-GATE-OBJ, integer)

computed-using
OR-GATE-OBJ-DELAY(x) = 0

var OR-GATE-OBJ-NANUFACTURER : map(OR-GATE-OBJ, string)
computed-using

OR-GATE-OBJ-MAIFUFACTUR2ER~x) "

var OR-GATE-OBJ-MIL-SPEC? : mapCOR-GATE-OBJ, booleaii)
computed-using

OR-GATE-OBJ-MIL-SPEC?(x) =nil

var OR-GATE-OBJ-POWER-LEVEL map(OR-GATE-OBJ, real)
computed-using
OR-GATE-OBJ-POWER-LEVEL~x) = 0.0

form Hake-OR-GATE-lames-Unique
unique-names-class( 'OR-GATE-OBJ, true)

function OR-GATE-OBJ-UPDATE1 (subsystem subsystem-obj.
or-gate :OR-GATE-OBJ) =

format (debug-on, 'OR-GATE-OBJ-UPDATE on -s-%", name~or-gate));

let Cmni :boolean = get-importC'inl, subsystem, or-gate),
in2 :boolean = get-importC'in2, subsystem, or-gate))

set-export(subsystem, or-gate, 'outi, Cmin or in2))

E-3



function OR-GATE-OBJ-NEW-UPDATE (subsystem subsystem-obj,
or-gate :OR-GATE-OBJ) =

format Ct, "OR-GATE-OBJ-NEW-UPDATE on -s-%/", name (or-gate))

E.3 Nand-Gate

!!in-package("RU")
''in-graznmar('user)

U% File name: nan~d-gate.re

var NAND-GATE-OBJ :object-class subtype-of Primitive-Obj

var NAND-GATE-OBJ--INPUT-DATA :set (import-obj)
{set-attrs (make-obj ect C import-obj),

,imortnam, 'ln,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-object C iinport-obj),
'import-name, 'in2,
'import-category, 'signal,
'import-type-data, 'booleaii)}

var NAND-GATE-OBJ-OUTPUT--DATA : set~export-obj)
{set-attrs (make-objectC 'export-obj),

'export-name, 'outI,
'export-category, 'signal,
'export-type-data, 'boolean)}

var IAID-GATE-OBJ-COEFFICIENTS : map CIAND-GATE-OBJ, set Cname-value-obj))
computed-using

NAND-GATE-OBJ-COEFFICIENTS(x) ={

var IAID-GATE-OBJ-UPDATE--FUNCTION :map(NAID-GATE-OBJ, symbol)
computed-using

NAID-GATE-OBJ-UPDATE-FUNCTION(x) = 'NAND-GATE-OBJ-UPDATEl

%. Other Attributes:
var IAID-GATE-OBJ-DELAY : mapCNAND-GATE--OBJ, integer)

computed-using
IAID-GATE-OBJ-DELAY~x) = 0

'ar IAID-GATE-0B3-MANUFACTURER : map CNAID-GATE-OBJ, string)

computed-using

E-4



IAND-GATE-OBJ-MNAUFACTURER(x) "

var NAND-GATE-OBJ-MIL-SPEC? : map CNAND-GATE-OBJ, boolean)
computed-using

NAND-GATE-OBJ-MIL-SPEC?(x) nil

var IAID-GATE-OBJ-POWER-LEVEL :map(IAIP-GATE-OBJ, real)
computed-using

NAND-GATE-OEJ-POWER-LEVEL~x) = 0.0

form Make-lAND-GATE-lames-Unique
unique-names-class(C NAND-GATE--OBJ, true)

function NAND-GATE-OBJ-UPDATE1 (subsystem subsystem-obj,
nand-gate NAND-GATE-OBJ)=

format (debug-on, "NAND-GATE-OBJ-UPDATE on -s%11, name (nand-gate));

let (imi boolean = get-irnportC'inl, subsystem, nand-gate),
in2 :boolean =get-importC'in2, subsystem, nand-gate))

set-export~subsystem, nand-gate, 'outi, (inl & in2))

function NAID-GATE-OBJ-NEV-UPDATE (subsystem subsystem-obj,
nand-gate NAND-GATE-OBJ)

fomtt "IANID-GATE-OBJ-IEW-UPDATE on -s%", name (nand-gate))

E.4 Nor-Gate

"I in-package('¶U11)
" in-grammar C user)

'I.V. File name: nor-gate.re

var NOR-GATE-OBJ :object-class subtype-of Primitive-Obj

var NOR-GATE-OBJ-INPUT-DATA : set Cimport-obj)
{set-attrs Cmake-objectC'import-obj),

'import-name, 'ln,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-obj ect C import-obj),
'import-name, 'in2,
'import-category. 'signal,
'import-type-data, 'boolean)}

E-5



var IOR-GATE-OBJ-OUTPUT--DATA :set Cexport-obj)=
{set-attrs (make-object('export-obj),

'export-name, 'outi,
'exortcatgor, 'signal,

'export-type-data, 'boolean)}

var NOR-GATE-OBJ-COEFFICIENTS :map(IOR-GATE-OBJ, set Cname-value-obj))
computed-using
NOR-GATE-OEJ-COEFFICIENTS(x) ={

var lOR-GATE-OBJ-UPDATE-FUNCTION : map(lOR-GATE-OBJ, symbol)
computed-using

NOR-GATE-OBJ-UPDATE-FUICTIOI Cx) = 'NOR-GATE-OBJ-UPDATE1

%A Other Attributes:
var IFOR-G.&TE-OBJ-DELAY : map(IOR-GATE-OBJ, integer)

computed-using
NOR-GATE-OEJ-DELAY~x) = 0

var NDR-GATE-OBJ-MANUFACTURER : map(lOR-GATE-OBJ, string)
computed-using
NOR-GATE-OBJ-MANUFACTURER(x)=

var NOR-GATE-OBJ-NIL-SPEC? : map(IOR-GATE-OBJ, boolean)
computed-using
IOR-GATE-OBJ-MIL-SPEC?(x) =nil

var IOR-GATE-OBJ-POWER-LEVEL map(ROR-GATE-OBJ, real)
computed-using
lOR-GATE-OBJ-POWER-LEVEL(x) =0.0

form Make-NOR-GATE-lames-Unique
unique-names-class(C NOR-GATE-OBJ, true)

function NOR-GATE-OBJ-UPDATEI (subsystem : subsystem-obj,
nor-gate : NOR-GATE-OBJ) =

I ormat(debug-on, "NOR-GATE-OBJ-UPDATE on -s%11, name (nor-gate));

let (ml :boolean = get-iuiport('inl, subsystem, nor-gate),
in2 boolean = get-import('in2, subsystem, nor-gate))

set-export (subsystem, nor-gate, 'outI, C(inl or in2))
% -----------------------------------------------------------
function IOR-GATE-OBJ-NEW-UPDATE (subsystem :subsystem-obj,

nor-gate :NOR-GATE-.OBJ)=

format Ct, "IOR-GATE-OBJ-IEW-UPDATE on - s %", name (nor-gate))

E-6



E. 5 Not-Gate

in-package("RU'l)
Iin-gra-nar( 'user)

1/% File name: not-gate.re

var NOT-GATE-OBJ :object-class subtype-of Primitive-Obj

var IOT-GATE-OBJ-INPUT-DATA :set(import-obj)
{set-attrs Cmake-objectC 'import -obj),

'import-name, 'ln,
'import-category, 'signal,
'import-type-data, 'boolean)}

var EOT-GATE-OBJ-OUTPU'T-DATA :set (export-obj)
{set-attrs (make-object('export-obj),

'export-name, 'out 1,
'export-category, 'signal,
'export-type-data, 'boolean)}

var IOT-GATE-OBJ-COEFFICIENTS : map(IOT-GATE-OBJ, set(name-value-obj))
computed-using

NOT-GATE-OB 3-COEFFICIENTS Cx) {

var IOT-GATE-OBJ-UPDATE-FUNCTION :map(NOT-GATE-OBJ, symbol)
computed-using
SOT-GATE-OBJ-UPDATE-FUICTION(x) = 'NOT-GATE-OBJ-UPDATEI

%. Other Attributes:
var IOT-GATE-OBJ-DELAY : map(EOT-GATE-OBJ, integer)
computed-using

NOT-GATE-OBJ-DELAY(x) = 0

var IOT-GATE-OBJ-NANUFACTURER : mapCIOT-GATE-OBJ, string)
computed-using

IOT-GATE-OBJ-NAIUFACTURER(x) "

var IOT-GATE-OBJ-NIL-SPEC? : map(NOT-GATE-OBJ, boolean)
computed-using

NOT-GATE-OBJ-MIL-SPEC? Cx) =nil

var IOT-GATE-OBJ-PCJWER-LEVEL :map(NOT-GATE-OBJ, real)
computed-using

NOT-GATE-OBJ-PO1IER-LEVEL(x) = 0.0

form Make-lOT-GATE-Names-Unique
unique-names-class('INOT-GATE-OBJ, true)

E- 7



function NOT-GATE-OBJ-UPDATEI (subsystem subsystem-obj,

not-gate IOT-GATE-OBJ)

format (debug-on, "NOT-GATE-OBJ-UPDATE on -s-%", name (not-gate));

let (inul boolean = get-import('inl, subsystem, not-gate))

set-export(subsystem, not-gate, loutl, Cmin))

function NOT-GATE-OH 3-NEW-UPDATE (subsystem subsystem-obj,
not-gate IOT-GATE-OBJ)

format(t, 'NOT-GATE-OBJ-NEW-UPDATE on -s'%", name (not-gate))

E.6 JK-Flip-Flop

i n-packageC"P.U")
ii n-gramma~r('user)

U% File name: jk-flip-Ilop.re

var JK-FLIP-FLOP-OBJ : objeoct-class subtype-of Primitive-Obj

var 3K-FLIP-FLOP-OH 3-INPUT-DATA :set Cimport-obj)
{set-attrs (make-object('import-obj),

'import-name, '3,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-object C import-obj),
'import-name, 'K,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs Cmake-obj ect C 'import-obj),

'import-name, 'Cik,
'import-category, 'signal,
'import-type-data, 'booleazi)}

var 3K-FLIP-FLOP-OH 3-OUTPUT-DATA :set (export-obj)
{set-attrs (make-object('export-obj),

'export-name, 'Q.
'export-category, 'signal,
'export-type-data, 'boolean),

set-attrs (mak.-object('export-obj),
'export-name, IQ-Bar,
'export-category, 'signal,
'export-type-data, 'boolean) }

E-8



var JK-FLIP-FLOP-OBi--COEFFICIENTS :mapC(JK-FLIP-FLOP-OBJ, set Cname-value-obj))
computed-using

JK-FLIP-FLOP-OBJ-COEFFICIENTS(x) U

var JK-FLIP-FLOP-OBJ-UPDATE-FUNCTION : map CJK-FLIP-FLOP-OBJ, symbol)
computed-using

JK-FLIP-FLOP-OBJ-UPDATE-FUNCTIOI(x) = 'JK-FLIP-FLOP-OBJ-UPDATEi

%. Other Attributes:
var JK-FLIP-FLOP-OBJ-DELAY :map (JK-FUIP-FLOP-OBJ, integer)
computed-using
JK-FLIP-FLOP-OBJ-DELAY(x) = 0

var JK-FLIP-FLOP-OBJ-MAIUFACTURER :mapC(JK-FLIP-FLOP-OBJ, string)
computed-using
JK-FLIP-FLOP-OBJ-ANAUFACTURtER(x)= II

var JK-FLIP-FLOP-OBJ-NIL-SPEC? : mapC(JK-FLIP-FLOP-OBJ, boolean)
computed-using
JK-FLIP-FLOP-OBJ-NIL-SPEC? Cx) =nil

var JK-FLIP-FLOP-OBJ'-POWER-LEVEL: mapC(JK-FLIP-FLOP-OBJ, real)
computed-using

JK-FLIP-FLOP-OBJ-POWER-LEVEL(x) =0.0

var JK-FLIP-FLOP-OBJ-SET-UP-DELAY :mapC(JK-FLIP-FLOP-OBJ, integer)
computed-using
JK-FLIP-FLOP-OBJ-SET-UP--DELAY(x) 0

var .IK-FLIP-FLOP-OBJ-HOLD-DELAY : mapC(JK-FLIP-FLOP-OBJ, real)
computed-using
JK-FLIP-FLOP-OBJ-BDLD-DELAY(x) = 0.0

vax JK-FLIP-FLOP-OBJ-STATE : map (JK-FLIP-FLOP-OBJ, boolean)
computed-using
JK-FLIP-FLOP-OBJ-STATE(x) = nil

form Make-JK-FLIP-FLOP-Names-Unique
unique-names-class(C JK-FLIP-FLOP-OBJ. true)

% ----------------------------------------------------------------
function .TK-FLIP-FLOP-OBJ-UPDATEI (subsystem :subsystem-obj.

jk-flip-flop :JK-FLIP-FLOP-OBJ)

format(debug-on, "JK-FLIP-FLOP-OBJ-UPDATE on -sl.", name (jk-f lip-i lop));

let Qj boolean = get-import('3, subsystem, jk-flip-flop),

E-9



k boolean =get-import('K, subsystem, jk-flip-flop),
cik :boolean = get-import('Clk, subsystem, jk-flip-flop))

(if -j & k & cik then
JK-FLIP-FLOP-OBJ-STATE(jk-f lip-flop) <- nil

elseif j & k & cik then
JK-FLIP-FLOP-aDJ-STATE(jk-flip-flop) <-

-JK-FLIP-FLOP-OBJ-STATE (jk-flip-flop)
elseif j & -k & cik then

JK-FLIP-FLOP-OBJ-STATE(jk-tlip-f lop) <- true

set-.xport(subsystem, jk-flip-flop, 'Q,
JK-FLIP-FLOP-OBJ-STATE(jk-flip-flop));

set-export(subsystem, jk-flip-flop, IQ-Bar,
- JK-FLIP--FLOP-OBJ-STATEC jk-f lip-flop))

% ----------------------------------------------------------------------

function JK-FLIP-FLOP-OBJ-NEV-UPDATE (subsystem subsysteaa-obj,
jk-flip-flop JK-FLIP-FLOP-OBJ)=

format Ct, 'JK-FLIP-FLOP-OBJ-IEV-UPDATE on -s-%", name (jk-ilip-f lop))

E. 7 switch

1! in-package ("RU")
!! in-grammar('user)

U% File name: switch.re

var SWITCI-OBJ : object-class subtype-of Primitive-Obj

var SWITCH-OBJ-INPUT-DATA set(import-obj) = {

"var SVITCN-OBJ-OUTPUT-DATA set (export-obj) =
{set-attrs (uake-obj ect( 'export-obj),

'export-name, 'out 1,
'export-category, 'signal,
'export-type-data, 'boolean) }

var SWITCH-OBJ-COEFFICIEITS : map(SWITCH-OBJ, set(name-value-obj))
computed-using

SWITCH-OBJ-COEFFICIENTS(x) ={

var SVITCI-OBJ-UPDATE-FUNCTIOI map(SVITCH-OBJ, symbol)
computed-using

E- 10



SVITCH-OBJ-UPDATE'-FUNCTION(x) = 'SVITCH-OBJ-UPDATE1

% Other Attributes:
var SWITCH-OBJ-NANIJFACTURER :map(SWITCH-OBJ, string)
computed-using
SWITCH-OBJ-NAXUUACTURER(x)

var SWITCH-OBJ-DEBOUICED : napCSWITCH-OBJ, boolean)
computed-using

SWITCI-OBJ-DEBOUNCED(x) = nil

var SWITCI-OBJ-DELAY : map(SWITCH-OBJ, integer)
computed-using
SWITCI-OBJ-DELAY(x) =0

var SWITCI-OBJ-POSITION :map(SWITCH-0BJ, symbol)
computed-using

SWITCH-OBJ-POSITION(x) = 'on

form Nake-SWITCH-Namas-Unique
unique-names-class( 'SWITCI-OBJ, true)

function SWITCH-OBJ-UPDATEI (subsystem subsystem-obj,
switch SWITCI-OBJ) =

format(debug-on, "SWITCH-GATE-OBJ-UPDATE on sa-%% name~auitch));

let (signal : boolean = nil)

(if SWITCH-OBJ-POSITION (switch) = '01 then
signal <- true

set-export(subsystem, switch, 'outi, signal)

function SVITCH-OBJ-IEW-UPDATE (subsystem :subsystem-obj,
switch :SWITCH-OBJ) =

foruat(t, "SWITCH-OBJ-NEH-UPDATE on -s-%". name(switch))

E.8 LED

1! in-package C"KU")
Hin-gramarC 'user)

E-1



U~ File name: led.re

var LED-OBJ object-class subtype-of Primitive-Obj

var LED-OBJ-INPUT-DATA : set(import-obj) =

{set-attrs Cmake-obj Oct C import-obj),
'import-name, Iiml,
'import-category, 'signal,
'import-type-data, 'boolean)}

var LED-OBJ-OUTPUT-DATA :set Cexport-obj) = {}

var LED-OBJ-COEFFICIENTS :map(LED-OBJ, set Cnaue-value-obj))
computed-using

LED-aBJ-COEFFICIEITS(x) {

var LED-OBJ-UPDATE-FUNCTIOI map CLED-OBJ, symbol)
computed-using

LED-0B3-UPDATE-FUUCTIOI Cx) = 'LED-OBJ-OI-OFF-UPDATE

% Other Attributes:
var LED-OBJ-KANUFACTtJRER : map(LED-OBJ, string)

computed-using
LED-OBJ-MANtJFACTURER(x) -I

var LED-OBJ-COLOR : map(LED-OBJ, symbol)
computed-using

LED-OBJ-COLORWx = 'red

form Mak.-LED-Names-Unique
unique-names-class C LED-OBJ, true)

function LED-OBJ-OI-OFF-UPDATE (subsystem :subsystem-obj,
led :LED-OBJ) =

format(debug-on, "LED-aBJ-OI-OFF-UPDATE on -s-%", name (led));

let (display-value : symbol = 'off)

(if get-import('inl, subsystem, led) then
display-value <- 'on

forimat(t, "LED sa = -a-%", name~led), display-value)

function LED-OBJ-T-F-UPDATE (subsystem :subsystem-obj.
led :LED-OBJ) =

format (debug-on, 'LED-OBJ-T-F-UPDATE on s9%". name~led));

E- 12



let (display-value :symbol = 'false)

(it get-importC'inl, subsystem, led) then
display-value <- 'true

format(t, "LED -s = -s-%". name~led), display-value)

E.9 Counter

I!in-packageC"RU")
'!in-grammar('user)

%%. File name: counter.re

var COUNTER-OBJ :object-class subtype-of Primitive-Obj

var COUITER-OBJ-INPUT-DATA : set(import-obj)
{set-attrs (make-object( 'import-obj),

I'import-name, 'Clock,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-object('import-obj),
'import-name, 'reset,
'import-category, 'signal,
'import-type-data, 'boolean)}

var COUJTER-OBJ-OUTPUT-DATA : set (export-obj)
{set-attrs Cmake-obj ect( 'export-obj),

'export-name, 'lsb,
'export-category, 'signal,
'export-type-data, 'boolean),

set-attrs (make-object( 'export-obj),
'export-name, 'msb,
'export-category, 'signal,
'export-type-data, 'boolean) }

var COUITER-OBJ-COEFFICIENTS : map(COUNTER-OBJ, set (name-value-obj))
computed-using

COUITER-OBJ-COEFFICIENTS(x)
{set-attrs (uake-object( 'name-value-obj), 'name-value-name, 'max-count,

'name-value-value, 3)1}

E- 13



var COUITER-OBJ-UPDATE-FUNCTIOI map(COUNTER-OBJ, symbol)
computed-using

COUITER-OBJ-UPDATE-FUNCTION Cx) = 'COUNTER-OBJ-UPDATEI

% Other Attributes:

var COUNTER-aLT-COUNT : mapCCOUNTER-OBJ, integer)
computed-using
COUITER-OBJ-COUIT(x) = 0

var COUNTER-OBT-DELAY : map(COUNTER-OBJ, integer)
computed-using
COUNTER-oBJ-DELAY(x) = 0

var COUNITER-OBJ-NANUFACTURER : map(COUNTER-OBJ, string)
computed-using
COUNTER-OBJ-HANUFACTURER(x) = ll

var COUNTER-OBJ-MIL-SPEC? : map(COUNTER-OBJ, boolean)
computed-using
COUNTER-OB.T-HIL-SPEC?(x) nil

var COUNTER-OBJ-POWER-LEVEL :mapCCOUNTER-OBJ, real)
computed-using
COUNTER-OBT-POWER-LEVEL(x) = 0.0

form Nake-COUNTER-Names-Unique
unique-naznes-classC 'COUITER-OBJ, true)

function COUNTER-OBJ-UPDATEI (subsystem :subsystem-obj,
counter :COUNTER-OBJ) =

format (debug-on, "COUITER-OBJ-UPDATEI on -s%", name~counter));

let (clock :boolean =get- import('Iclock, subsystem, counter),
reset :boolean = get-import('reset, subsystem, counter))

(if reset then
COUNTER-OBJ-COUNT(counter) <- 0

elseif clock then
COUNlTER-OBJ-COUET(counter) <- COUITER-OBJ-COUNT( counter) +1

(if COUNTER-OBJ-COUNT(counter) >

get-coefficient-value (counter, 'max-count) then
COUNTER-OBJ-COUNT(counter) <- 0

if COUNTER-OB.T-COUNT(counter) = 0 then
set-.zport(subsystem, counter, 'msb, nil);
set-export(subsystem, counter, 'lob, nil)

elmeif COUNTER-OLT-COUNT(counter) = I then

E- 14



set-export~subsystem, counter, 'msb, nil);
set-export(subsystem, counter, 'lsb, true)

elseif COUITER-OBJ-COUiT~counter) =2 then
set-export(subsystem, counter, 'Imsb, true);
set-export~subsystem, counter, 'lsb, nil)

elseif CQUNTER-OBJ-COUlT~counter) = 3 then
set-export(subsystem, counter, 'msb, true);
set -export (subsystem, counter, 'lsb, true)

E.10 Half-Adder

!!in-package ("RU")
*!in-grammarC('user)

%%File name: half-adder.re

var HALF-ADDER-OBJ :object-class subtype-of Primitive-Obj

var HALF-ADDER-OBJ-INPUT-DATA :set(import-obj)=
{set-attrs Cmake-object( 'import-obj),

'import-name, 'mnl,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-object( 'import-obj),
'import-name, 'in2,
'import-category, 'signal,
'import-type-data, 'boolean)}

var HALF-ADDER-OBJ-GUTPUT--DATA : set Cexport-obj)2
{set-attrs Cmake-obj ect C export-obj),

'export-name, Is,
'export-category, 'signal,
'export-type-data, 'boolean),

set-attre (make-object C export-obj),
'export-name, 'c,
'export-category, 'signal,
'export-type-data, 'boolean) }

var HALF-ADDER-OBJ-COEFFICIEITS : map (HALF-ADDER--OBJ, set (name-value-obj))
computed-using

HALF-ADDER-OBJ-COEFFICIEITS(x) ={

var HALF-ADDER-OBJ-UPDATE-FUNCTIOI map(HALF-ADDER-OBJ, symbol)
computed-using

E- 15



IALF-ADDER-OBJ-UPDATE-FUNCTIOI Cx) = 'HALF-ADDER-OBJ-UPDATEI

o% Other Attributes:
var HALF-ADDER-V'43-DELAY : map(HALF-ADDER-OBJ, integer)

computed-using
HALF-ADDER-OBJ-DELAY(x) = 0

var HALF-ADDER-OBJ-NANUFACTURER : map(HALF-ADDER-OBJ, string)
computed-using
HALF-ADDER-OBJ-MANUFACTURER(x)=

var HALF-ADDER--OBJ-MIL-SPEC? :map(HALF-ADDER-OBJ, boolean)
computed-using
HALF-ADDER-OBJ-MIL-SPEC?(x) =nil

var HALF-ADDER--OBJ-POWER-LEVEL :map CHALF-ADDER-OBJ, real)
computed-using
HALF-ADDER-OBJ-POWER-LEVEL Cx) = 0.0

form Make-HALF-ADDER-Names-Unique
unique-names-class( 'HALF-ADDER-OBJ, true)

function HALF-ADDER-OBJ-UPDATE1 (subsystem subsystem-obj,
half-adder HALF-ADDER-OBJ)

let (ml :boolean = get-importC'ini, subsystem, half-adder),
in2 :boolean = get-import('in2, subsystem, half-adder))

if -inl and -in2 then
set-export~subsystem, half-adder, Is, nil);
set-export(subsystem, half-adder, 'c, nil)

elseif inl and -in2 then
set-export~subsystem, half-adder, Is, true);
set-export(subsystem, half-adder, 'c, nil)

elseif -ini and in2 then
set-export(subsysteu, half-adder, Is, true);
set-export~subsystem, half-adder, 'c, nil)

elseif inl and in2 then
set-export(subsystem, half-adder, Is, nil);
set-export(subsystem, half-adder, 'c, true)

E. 11 Decoder

in-package Q'RU')
in-gramuar( 'user)

E- 16



'/%File name: decoder.re

var DECODER-OBJ object-class subtype-of Primitive-Obj

var DECODER-OBJ-INPUT-DATA :set~import-obj)
{set-attrs Cmake-object('import-obj),

'import-name, 'mnl,
'import-category, 'signal,

'import-type-data, 'boolean),

set-attrs (make-obj ect C import-obj),
'import-name, 'in2,
'import-category, 'signal,

'import-type-data, 'boolean),

set-attrs (make-object('import-obj),
'import-name, 'in3,
'import-category, 'signal,
'import-type-data, 'boolean)}

var DECODER-OBJ-OtJTPUT-DATA : set~export-obj)

{set-attrs (make-object( 'export-obj),
'export-name, 'mO,
'export-category, 'signal,
'export-type-data, 'boolean),

set-attrs (make-objectC'export-obj),
'export-name, 'ml,

'export-category, 'signal,
'export-type-data, 'boolean),

set-attrs Cmake-object('export-obj),
'export-name, 'm2,
'export-category, 'signal,
'export-type-data, 'boolean),

set-attrs (make-objectC'export-obj),
'export-name, 'm3,
'export-category, 'signal,
'export-type-data, 'boolea~n),

set-attrs (make-object( 'export-obj),
'export-name, 'm4,
'export-category, 'signal,
'export-type-data, 'boolean),

set-attrs (make-object('export-obj),
'export-name, 'inS,
'export-category, 'signal,
'export-type-data, 'boolean),

E- 17



Bet-attrs Cmake-object( 'export-obj),
'export-name, 'm6,
'export-category, 'signal,
'export-type-data, lboolean),

set-attrs (make-object C export-obi),
'export-name, '37,
'export-category, 'signal,
'export-type-data, 'boolean) }

var DECODER-OBJ-COEFFICIENTS : inapCDECODER-OBJ, set~name-value-obj))

computed-using
DECODER-OB 3-COEFFICIENTS Cx) ={

var DECODER-OBJ-UPDATE-FUNCTIOI map(DECODER-OBJ, symbol)

computed-using
DECODER-OBJ-UPDATE-FUNCTION(x) ='DECODER-OBJ-UPDATEI

% Other Attributes:
var DECODER-OBJ-DELAY : mapCDECODER-OBJ, integer)

computed-using
DECODER-OBJ-DELAY(x) = 0

var DECODER-OBJ-MANUFACTURER :map(DECODER-OBJ, string)

computed-using
DECODER-OBJ-MANUFACTURER~x) "

var DECODER-OBJ-MIL-SPEC? : mapCDECODER-OBJ, boolean)
computed-using

DECODER-OBJ-NIL-SPEC?(x) =nil

var DECODER-OBJ-POWER-LEVEL :map CDECODER-OBJ, real)
computed-using
DECODER-OBJ-POWER-LEVEL~x) = 0.0

form Make-DECODER-Names-Unique
unique-names-class ( DECODER-OBJ, true)

%----------------------------------------------------------
function DECODER-OBJ-UPDATEI Csubsystem subsystem-obj,

decoder :DECODER-OBJ) =

let (x :boolean = get-importC'inl, subsystem, decoder),

y :boolean = get-importC'in2, subsystem, decoder),

z :boolean = get-import(lin3, subsystem, decoder))

%. set all outputs to false to start; don't want any left-over

% values adversely affecting output.

set-export(subsystem, decoder, 'mO, nil);

E-.18



set-export~subsystem, decoder, 'ml, nil);
set-export(subsystem, decoder, '.2, nil);
set-export (subsystem, decoder, '.3, nil);
set-export(subsystem, decoder, '.4, nil);
set-export(subsystem, decoder, '.5, nil);
set-export(subsystem, decoder, '.6, nil);
set-export~subsystem, decoder, '.7, nil);

if -x and -y and -z then
set-export(subsystem, decoder, 'mO, true)

elseif -x and -y and z then
set-export~subsystem, decoder, 'ml, true)

elseif -x and y and -z then
set-export(subsystem, decoder, 'm2, true)

elseif -x and y and z then
set-export(subsystem, decoder, '.3, true)

elseif x and -y and -z then
set-erport(subsystem, decoder, '.4, true)

elseif x and -y and z then
set-export(subsystem, decoder, '.5, true)

elseif x and y and -z then
set-export(subsystezn, decoder, 'm6, true)

elseif x and y and z then
set-export~subsystem, decoder, 'm7, true)

E. 12 MUX

Hin-package('RU'l)
H in-grammar( 'user)

U% File name: mux.re

var MUX-OBJ :object-class subtype-of Primitive-Obj

var NUX-OBJ-IIPtJT-DATA :set(import-obj) =
{set-attrs (make-object ( import-obj),

'import-name, 'mnO,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs Cuake-object( 'import-obj),
'import-name, 'mlI,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-object C import-obj),
'import-name, 'in2,
'import-category, 'signal,

E- 19



'import-type-data, 'boolean),

set-attrs Cmake-obj ect C import-obj),
'import-name, 'in3,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs (make-obj ect C import-obj),
'import-name, 'sO,
'import-category, 'signal,
'import-type-data, 'boolean),

set-attrs Cmake-object( 'import-obj),
'import-name, 'Is,
'import-category, 'signal,
'import-type-data, 'boolean)}

var NUX-OBJ-OUTPUT-DATA :set~export-obj) =
{set-attrs (make-objectC'export-obj),

'export-name, 'out 1,
'export-category, 'signal.
'export-type-data, 'boolean)}

var MUX-OBJ-COEFFICIUNTS :map(NUX-OB3, set Cname-value-obj))
computed-using
NUX-OBJ-COEFFICIENTS(x) ={

var NUX-OBJ-UPDATE-FUNCTIOI map CWUX-OBJ, symbol)
computed-using

NUX-OBJ-UPDATE-FUICTIOI(x) = 'MUX-OBJ-UPDATEI

% Other Attributes:
var NUX-OBJ-DELAY :map(WUX-OBJ, integer)

computed-using
NUX-OBJ-DELAY(x) = 0

va~r J(UX-OBJ-NANUFACTURER : map(NUX-OBJ, string)
computed-using

NUX-OBJ-NANUFACTURER~x) = fel

var KUX-OBJ-NIL-SPEC? :map(NUX-OBJ, boolean)
computed-using
NUX-OBJ-141L-SPEC?Cx) =nil

var KUX-OBJ-POWER-LEVEL :map(NUX-OBJ, real)
computed-using
KUX-OBJ-POWEIL-LEVEL~x) = 0.0

form Nake-NUX-Eames-Unique
uinique-names-clases 'UX-OBJ, true)

&X20



function NUX-OBJ-UPDATEI (subsystem :subsystem-obj,
mlix :MUX-OBJ)=

let (sO boolean =get-import('sO, subsystem, mux),
s1 boolean = get-importC'si, subsystem, mux))

if -s0 and -s1 then
set-export(subsystem, mux, 'outi,

get-importC'inO, subsystem, mux))

elseif sO and -s1 then
set-export(subsystem, mux, 'outi,

get-importC'inl, subsystem, mux))

elseif -s0 and si then
set-export(subsystem, miii, 'outi,

get-import('un2, subsystem, miii))

elseif sO and si then
set-export(subsystem, miii, 'outi,

get-importC'in3, subsystem, miii))

E-2 1.



Vita

Captain Cynthia G. Anderson was born on 29 July 1955 in Burlington, Vermont and

graduated as valedictorian from Mount Mansfield Union High School in Jericho Center,

Vermont in June, 1972. She enlisted in the Air Force in April 1975 and completed technical

training for computer programming at Sheppard AFB, Texas in September, 1975. After

programming assignments in finance/budget and personnel/training functional areas at

Peterson AFB, Colorado and Randolph AFB. Texas, she was accepted into the Airmen

Education and Commissioning Program and entered the University of Oklahoma at Nor-

man, Oklahoma in August, 1980. Upon graduating with special distinction and a Bachelor

of Science in Computer Science degree in December 1982, she attended Officer Training

School and received her commission as first honor graduate on 1 April 1983. As a new

lieutenant, she was assigned to Tinker AFB, Oklahoma where she maintained the AWACS

airborne operational computer program software and later was responsible for development

test and evaluation of all new software versions. She was reassigned to Lowry AFB, Col-

orado in July 1988 and managed software configuration control for a world-wide satellite

communications system. In May 1991, Captain Anderson entered the Air Force Institute

of Technology at Wright-Patterson AFB, Ohio to pursue a Master of Science degree in

Computer Systems.

Permanent address: 2800 Lamb Blvd #274
Las Vegas Nevada 89121

VITA- 1



Bibliography

1. Arango, Guillermo. "Domain Analysis: Art Form to Engineering Discipline," ACM, 152-159
(January 1989).

2. Bailor, Paul D. and others. "Formalization and Visualization of Domain-Specific Software
Architectures (submitted for publication)," (1992).

3. Baldo, James. Reuse in Practice Workshop Summary. Technical Report, Institute for Defense
Analysis, April 1990 (AD-A226 895).

4. Barstow, David R. "Domain-Specific Automatic Programming," IEEE Transactions on Soft-
ware Engineering, 11:1321-- 1326 (November 1985).

5. Batory, Don and Sean O'Malley. The Design and Implementation of Hierarchical Software
Systems with Reusable Components. Technical Report TR-91-22, Austin, Texas: University
of Texas, January 1992.

6. Booch, Grady. Software Engineering With Ada, Second Edition. Menlo Park, CA: The Ben-
jamin/Cummings Publishing Company, Inc, 1987.

7. Booth, Guy R. Implementation of an Object-Oriented Flight Simulator D.C. Electrical System
on a Hypercube Architecture. MS thesis, AFIT/GCE/ENG/91D-01, School of Engineering, Air
Force Institute of Technology(AU), Wright-Patterson AFB, OH, December 1991.

8. Breeding, Kenneth J. Digital Design Fundamentals. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1989.

9. Brooks, Frederick P., Jr. "No Silver Bullet - Essence and Accidents of Software Engineering,"
IEEE Computer, 10-19 (April 1987).

10. D'Ippolito, Richard and Kenneth Lee. "Modeling Software Systems by Domains." Tenth
Automating Software Design Workshop. American Association for Artificial Intelligence, April
1992.

11. D'Ippolito, Richard S. "Using Models in Software Engineering." Proceedings: TRI-Ada '89.
256-265. New York, NY: Association of Computing Machinery, Inc., 1989.

12. D'Ippolito, Richard S. and Charles P. Plinta. "Software Development Using Models," A CM
Sigsoft Software Engineering Notes (October 1989).

13. Fischer, Charles N. and Richard J. LeBlanc, Jr. Crafting a Compiler with C. Redwood City,
CA: Benjamin/Cummings Publishing Company, Inc, 1991.

14. Frakes, W. B. "Representation Methods for Software Reuse." Proceedings: TRI-Ada '89.
500-516. New York, NY: Association of Computing Machinery, Inc., 1989.

15. Freeman, Peter, editor. Tutorial: Software Reusability. Washington, D.C.: Computer Society
Press of the IEEE, 1987.

16. Greenspan, Sol J. Requirements Modeling: A Knowledge Representation Approach to Software
Requirements Definition. PhD dissertation, University of Toronto, Toronto, Ontario, Canada,
1984.

17. Holibaugh, Robert. "Reuse: Where to Begin and Why." Rcuse in Practice Workshop Sum-
mary, edited by James Baldo. 74-79. 1990.

18. lscoe, Neil. "Domain Modeling - Evolving Research." Proceedings of the Sixth Annual
Knowldege-Based Software Engineering Conference. 300 - 304. 1991.

BIB-1



19. Iscoe, Neil Allen. Domain-Specific Programming: An Object-Oriented and Knowledge-based
Approach to Specification and Generation. PhD dissertation, The University of Texas at
Austin, Austin Texas, 1990.

20. Kang, Kyo C. and others. Feature-Oriented Domain Analysis (FODA) Feasibility Study. _-
nical Report CMU/SEI-90-TR-21, Software Engineering Institute, November 1990 (AD-A235
785).

21. Korth, Henry F. and Abraham Silberschatz. Database System Concepts, 2nd edition. New
York, NY: McGraw-Hill, Inc., 1991.

22. Lane, Thomas G. Studying Software Architectures through Design Spaces and Rules. Technical
Report CMU/SEI-90-TR-18, Software Engineering InstituLe, November 1990.

23. Lee, Kenneth J. and others. An OOD Paradigm for Flight Simulators, Second Edition. Tech-
nical Report CMU/SEI-88-TR-30, Software Engineering Institute, September 1988 (AD-A204
849).

24. Lee, Kenneth J. and others. Model-Based Software Development (Draft). Technical Report
CMU/SEI-92-SR-00, Software Engineering Institute, December 1991.

25. Lockheed Software Technology Center. Software User's Manual for the Automatic Program-
ming Technologies For Avionics Software (APTAS) System. Technical Report, Palo Alto, CA:
Lockheed Software Technology Center, June 1991.

26. Lowry, Michael R. "Software Engineering in the Twenty-first Century." Automating Software
Design, edited by Michael R. Lowry and Robert D. McCartney. 627-654. Menlo Park, CA:
AAAI Press/MIT Press, 1991.

27. Mano, M. Morris. Computer System Architecture. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1976.

28. Neighbors, James M. "The Draco Approach to Constructing Software from Reusable Compo-
nents," IEEE Transactions on Software Engineering, 10:564-574 (September 1984).

29. Perry, J. M. and M. Shaw. "The Role of Domain Independence in Promoting Software Reuse,
Architectural Analysis of Systems." Reuse in Practice Workshop Summary, edited by James
Baldo. 123-128. 1990.

30. Peterson, A. Spencer. "Coming to Terms with Software Reuse: A Model-based Approach,"
ACM SIGSOFT Software Engineering Notes, 16:45-51 (April 1991).

31. Prieto-Diaz, Ruben. "Domain Analysis: An Introduction," ACM SIGSOFT Software Engi-
neering Notes, 15:47-54 (April 1990).

32. Prieto-Dlaz, Rub~n. "Domain Analysis for Reusability." Proceedings of the 11th Annual In-
ternational Computer Software and Application Conference. 23-29. IEEE Computer Society
Press, 1990.

33. Randour, Captain Mary Anne. Creating and Manipulating a Domain Specific Formal Ob-
ject Base. MS thesis, AFIT/GCS/ENG/92D, School of Engineering, Air Force Institute of
Technology(AU), Wright-Patterson AFB, OH, December 1992.

34. Reasoning Systems, Inc. DIALECT User's Guide. Palo Alto, CA, July 1990.

35. Reasoning Systems, Inc. REFINE User's Guide. Palo Alto, CA, May 1990.

36. Royce, Walker. "Reliable, Reusable Ada Components for Constructing Large, Distributed
Multi-Task Networks: Network Architecture Services (NAS)." Proceedings: TRI-Ada '89.
500-516. New York, NY: Association of Computing Machinery, Inc., 1989.

BIB-2



37. Ruegpegger, Ted. "Making Reuse Pay: The SIDPERS-3 RAPID Center," IEEE Communica-
tions Magazine, 26, No. 8:16-24 (Aug 1988).

38. Shaw, Mary. "Larger Scale Systems Require Higher-Level Abstractions," ACM Sigsoft Soft-
ware Engineering Notes, 14, No. 3:143-146 (May 1988).

39. Smith, Douglas R. "KIDS - A Knowledge-Based Software Development System." Automating
Software Design, edited by Michael R. Lowry and Robert D. McCartney. 483-514. Menlo
Park, CA: AAAI Press/MIT Press, 1991.

40. Spicer, Kelly L. Mapping an Object-Oriented Requirements Analysis to a Design Architecture
that Supports Reuse. MS thesis, AFIT/GCS/ENG/90D, School of Engineering, Air Force
Institute of Technology(AU), Wright-Patterson AFB, OH, December 1990.

41. Stark, Michael E. and Eric W. Booth. "Using Ada to Maximize Verbatim Software Reuse."
Proceedings: TRI-Ada '89. 278-290. New York, NY: Association of Computing Machinery,
Inc., 1989.

42. Stewart, Jeff. "Software Architectures," briefing (August 1992).

43. Tracz, Will. "Summary of Implementation Working Group." Reuse in Practice Workshop
Summary, edited by James Baldo. 10-19. 1990.

44. Weide, Lieutenant Timothy. Visualization and Manipulation of a Formal Object Base (Draft).
MS thesis, AFIT/GCS/ENG/93M, School of Engineering, Air Force Institute of Technol-
ogy(AU), Wright-Patterson AFB, OH, March 1993.

BIB-3



Form Approved
REPORT DOCUMENTATION PAGE orm Aoved

PAGE MB No. 0704-0188
Public eDc 3 oi'ien #or this ollection of information is estimated to average I hour Per FepCse. .ncludig the time for rewiewng insirictiroi. seac,,n; ei sing data sources,
gather -g •u-ta r ni t"e data needed, and completing and reviewing the cOlldctiOn Of information Send comments regardrig this burden estrmate , an. 3ther aspect Of this
collect•:•c,:- is, 1r' ,on. rnc'udng suggestions for reducing this burden to Washington HeddQuarters Seroces. Di'ectorate for ,nformation Operat.ons and Reocrls. 1215 Jefferson
Daiii Hlg?.av. Su-te 1204, Arlington. VA 22202-4302. and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Wash.ngton. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1992 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

CREATING AND MANIPULATING FORMALIZED SOFTWARE AR-
CHITECTURES TO SUPPORT A DOMAIN-ORIENTED APPLICATION
COMPOSITION SYSTEM

6. AUTHOR(S)
Cynthia G. Anderson, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AEOT/NUMBER
AFIT/GCS/ENG/92D-01

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

ASC/RWWW AGENCY REPORT NUMBER

Wright-Patterson AFB, OH 45433-6583

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)
This research investigated technology which enables sophisticated users to specify, generate, and maintain ap-
plication software in domain-oriented terms. To realize this new technology, a development environment, called
Architect, was designed and implemented. Using canonical formal specifications of domain objects, Architect
rapidly composes these specifications into a software application and executes a prototype of that application as
a means to demonstrate its correctness before any programming language specific code is generated. Architect
depends upon the existence of a formal object base (or domain model) which was investigated by another stu-
dent in related research. The research described in this thesis relied on the concept of a software architecture,
which was a key to Architect's successful implementation. Various software architectures were evaluated and the
Object-Connection-Update (OCU) model, developed by the Software Engineering Institute, was selected. The
Software Refinery environment was used to implement the composition process which encompasses connecting
specified domain objects into a composed application, performing semantic analysis on the composed application,
and, if no errors are discovered, simulating the execution of the application. Architect was validated using both
artificial and realistic domains and was found to be a solid foundation upon which to build a full-scale application
composition system.

14. SUBJECT TERMS 15. NUMBER OF PAGES

computers, computer programs, software engineering, specifications, 254
software architecture models, application composition systems, 16. PRICE CODE
domain-modelint. domII n-secific lan•uafes

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-28-5500 Standard ;orm 298 (Rev 2-89)
1r1crbed b5rAN .51, 1I 39-8S

298-1 2


